Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
ARTICLE, Behavioral/Systems

An Inhibitory Interface Gates Impulse Traffic between the Input and Output Stations of the Amygdala

Sébastien Royer, Marzia Martina and Denis Paré
Journal of Neuroscience 1 December 1999, 19 (23) 10575-10583; DOI: https://doi.org/10.1523/JNEUROSCI.19-23-10575.1999
Sébastien Royer
1Laboratoire de Neurophysiologie, Département de Physiologie, Faculté de Médecine, Université Laval, Québec, (QUE), Canada, G1K 7P4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marzia Martina
1Laboratoire de Neurophysiologie, Département de Physiologie, Faculté de Médecine, Université Laval, Québec, (QUE), Canada, G1K 7P4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Denis Paré
1Laboratoire de Neurophysiologie, Département de Physiologie, Faculté de Médecine, Université Laval, Québec, (QUE), Canada, G1K 7P4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The central amygdaloid nucleus projects to brainstem and hypothalamic nuclei mediating fear responses and receives convergent sensory inputs from the basolateral amygdaloid complex. However, interposed between the basolateral complex and central nucleus is a string of interconnected GABAergic cell clusters, the intercalated cell masses. Here, we analyzed how intercalated neurons influence impulse traffic between the basolateral complex and central nucleus using whole-cell recordings, microstimulation, and local application of glutamate receptor antagonists in brain slices. Our results suggest that intercalated neurons receive glutamatergic inputs from the basolateral complex and generate feedforward inhibition in neurons of the central nucleus. As the position of the recording site was shifted medially, intercalated cells projected to gradually more medial sectors of the central nucleus and were maximally responsive to progressively more medial stimulation sites in the basolateral complex. Thus, there is a lateromedial correspondence between the position of intercalated cells, their projection site in the central nucleus, and the source of their excitatory afferents in the basolateral complex. In addition, basolateral stimulation sites eliciting maximal excitatory responses in intercalated neurons were flanked laterally by sites eliciting prevalently inhibitory responses via the activation of intercalated cells located more laterally. As a result, the feedforward inhibition generated by intercalated neurons and, indirectly, the amplitude of the responses of central neurons could be increased or decreased depending on which combination of amygdala nuclei are activated and in what sequence. Thus, the output of the central nucleus depends not only on the nature and intensity of sensory inputs but also on their timing and origin.

  • amygdala
  • intra-amygdaloid pathways
  • intercalated cell masses
  • central amygdaloid nucleus
  • feedforward inhibition
  • fear conditioning
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 19 (23)
Journal of Neuroscience
Vol. 19, Issue 23
1 Dec 1999
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
An Inhibitory Interface Gates Impulse Traffic between the Input and Output Stations of the Amygdala
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
An Inhibitory Interface Gates Impulse Traffic between the Input and Output Stations of the Amygdala
Sébastien Royer, Marzia Martina, Denis Paré
Journal of Neuroscience 1 December 1999, 19 (23) 10575-10583; DOI: 10.1523/JNEUROSCI.19-23-10575.1999

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
An Inhibitory Interface Gates Impulse Traffic between the Input and Output Stations of the Amygdala
Sébastien Royer, Marzia Martina, Denis Paré
Journal of Neuroscience 1 December 1999, 19 (23) 10575-10583; DOI: 10.1523/JNEUROSCI.19-23-10575.1999
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • amygdala
  • intra-amygdaloid pathways
  • intercalated cell masses
  • central amygdaloid nucleus
  • feedforward inhibition
  • fear conditioning

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • A Precise Retinotopic Map of Primate Striate Cortex Generated from the Representation of Angioscotomas
  • Differential Role of Mitogen-Activated Protein Kinase in Three Distinct Phases of Memory for Sensitization in Aplysia
  • Evidence for Long-Lasting Cholinergic Control of Gap Junctional Communication between Adrenal Chromaffin Cells
Show more ARTICLE

Behavioral/Systems

  • Elevated Expression of 5-HT1B Receptors in Nucleus Accumbens Efferents Sensitizes Animals to Cocaine
  • Depression of Fast Excitatory Synaptic Transmission in Large Aspiny Neurons of the Neostriatum after Transient Forebrain Ischemia
  • Evidence for Sequential Decision Making in the Medicinal Leech
Show more Behavioral/Systems
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.