Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
ARTICLE

Axons from Anteroventral Cochlear Nucleus that Terminate in Medial Superior Olive of Cat: Observations Related to Delay Lines

Gretchen E. Beckius, Ranjan Batra and Douglas L. Oliver
Journal of Neuroscience 15 April 1999, 19 (8) 3146-3161; DOI: https://doi.org/10.1523/JNEUROSCI.19-08-03146.1999
Gretchen E. Beckius
1Department of Anatomy, University of Connecticut Health Center, Farmington, Connecticut 06030-3405
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ranjan Batra
1Department of Anatomy, University of Connecticut Health Center, Farmington, Connecticut 06030-3405
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Douglas L. Oliver
1Department of Anatomy, University of Connecticut Health Center, Farmington, Connecticut 06030-3405
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The differences in path length of axons from the anteroventral cochlear nuclei (AVCN) to the medial superior olive (MSO) are thought to provide the anatomical substrate for the computation of interaural time differences (ITD). We made small injections of biotinylated dextran into the AVCN that produced intracellular-like filling of axons. This permitted three-dimensional reconstructions of individual axons and measurements of axonal length to individual terminals in MSO. Some axons that innervated the contralateral MSO had collaterals with lengths that were graded in the rostrocaudal direction with shorter collaterals innervating more rostral parts of MSO and longer collaterals innervating more caudal parts of MSO. These could innervate all or part of the length of the MSO. Other axons had restricted terminal fields comparable to the size of a single dendritic tree in the MSO. In the ipsilateral MSO, some axons had a reverse, but less steep, gradient in axonal length with greater axonal length associated with more rostral locations; others had restricted terminal fields. Thus, the computation of ITDs is based on gradients of axonal length in both the contralateral and ipsilateral MSO, and these gradients may account for a large part of the range of ITDs encoded by the MSO. Other factors may be involved in the computation of ITDs to compensate for differences between axons.

  • auditory pathways
  • interaural timing differences
  • binaural hearing
  • cat
  • conduction velocity
  • superior olivary complex
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 19 (8)
Journal of Neuroscience
Vol. 19, Issue 8
15 Apr 1999
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Axons from Anteroventral Cochlear Nucleus that Terminate in Medial Superior Olive of Cat: Observations Related to Delay Lines
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Axons from Anteroventral Cochlear Nucleus that Terminate in Medial Superior Olive of Cat: Observations Related to Delay Lines
Gretchen E. Beckius, Ranjan Batra, Douglas L. Oliver
Journal of Neuroscience 15 April 1999, 19 (8) 3146-3161; DOI: 10.1523/JNEUROSCI.19-08-03146.1999

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Axons from Anteroventral Cochlear Nucleus that Terminate in Medial Superior Olive of Cat: Observations Related to Delay Lines
Gretchen E. Beckius, Ranjan Batra, Douglas L. Oliver
Journal of Neuroscience 15 April 1999, 19 (8) 3146-3161; DOI: 10.1523/JNEUROSCI.19-08-03146.1999
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • auditory pathways
  • interaural timing differences
  • binaural hearing
  • cat
  • conduction velocity
  • superior olivary complex

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Estrogen Modulates the Visceromotor Reflex and Responses of Spinal Dorsal Horn Neurons to Colorectal Stimulation in the Rat
  • Phosphatidylinositol 3-Kinase Regulates the Induction of Long-Term Potentiation through Extracellular Signal-Related Kinase-Independent Mechanisms
  • Functional Hemichannels in Astrocytes: A Novel Mechanism of Glutamate Release
Show more ARTICLE
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.