Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Characterization of [3H]desipramine binding associated with neuronal norepinephrine uptake sites in rat brain membranes

CM Lee, JA Javitch and SH Snyder
Journal of Neuroscience 1 October 1982, 2 (10) 1515-1525; https://doi.org/10.1523/JNEUROSCI.02-10-01515.1982
CM Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JA Javitch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SH Snyder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A variety of evidence indicates that [3H]desipramine can label neuronal norepinephrine uptake sites in brain membranes. Pretreatment of rat cerebral cortical membranes with 0.3 M KCl increases the ratio of high affinity to low affinity saturable [3H]desipramine binding. With this improved tissue preparation, we have confirmed our earlier observation that the high affinity [3H]desipramine binding component (KD = 2 to 4 nM) is associated with norepinephrine neuronal uptake sites. The potencies of various antidepressant drugs in reducing [3H]desipramine binding correlate with their inhibition of neuronal [3H]norepinephrine accumulation. Like the norepinephrine uptake system, high affinity [3H]desipramine binding is dependent both on sodium and chloride, with half-maximal stimulation by 10 mM chloride. Although bromide can substitute for chloride to stimulate binding, other anions, including iodide, fluoride, acetate, citrate, and phosphate, are inactive. Comparable sodium and anion regulation of [3H]imipramine binding to serotonin uptake recognition sites also is observed. The association of [3H]desipramine binding sites with neuronal norepinephrine uptake sites is supported further by the selective abolition of high affinity [3H]desipramine binding following the destruction of central norepinephrine neurons by intraperitoneal administration of DSP-4 (N-(2- chloroethyl)-N-ethyl-2-bromobenzylamine). In vitro incubation of cerebral cortical membranes with DSP-4 also selectively abolishes the high affinity [3H]desipramine binding, an effect which cannot be reversed by repeated washing of the membranes, suggesting that DSP-4 alkylates neuronal norepinephrine uptake sites.

Back to top

In this issue

The Journal of Neuroscience: 2 (10)
Journal of Neuroscience
Vol. 2, Issue 10
1 Oct 1982
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of [3H]desipramine binding associated with neuronal norepinephrine uptake sites in rat brain membranes
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Characterization of [3H]desipramine binding associated with neuronal norepinephrine uptake sites in rat brain membranes
CM Lee, JA Javitch, SH Snyder
Journal of Neuroscience 1 October 1982, 2 (10) 1515-1525; DOI: 10.1523/JNEUROSCI.02-10-01515.1982

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Characterization of [3H]desipramine binding associated with neuronal norepinephrine uptake sites in rat brain membranes
CM Lee, JA Javitch, SH Snyder
Journal of Neuroscience 1 October 1982, 2 (10) 1515-1525; DOI: 10.1523/JNEUROSCI.02-10-01515.1982
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.