Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Electrophysiology and morphology of the developing hippocampus of fetal rabbits

PA Schwartzkroin and DD Kunkel
Journal of Neuroscience 1 April 1982, 2 (4) 448-462; https://doi.org/10.1523/JNEUROSCI.02-04-00448.1982
PA Schwartzkroin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DD Kunkel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The pyramidal neurons of fetal rabbit hippocampus were studied using intracellular electrophysiological techniques in in vitro slice preparations. Correlative light and electron microscopic analyses were carried out on hippocampus during the 21st through the 29th day of fetal gestation. In intracellular experiments, neurons with all-or-none action potentials and near-adult level resting potentials were found even in the youngest preparations. Synaptic activity, however, was rare until about 24 days of gestation. CA1 neurons showed primarily excitatory synaptic potentials during fetal development, whereas CA3 neurons displayed both inhibitory and excitatory postsynaptic potentials at early stages. Anatomical studies suggested that pyramidal cell precursors were still dividing and migrating at 21 days; by 29 days, cellular migration was completed, and cellular intercommunication in the form of synapses was increasing. These experiments demonstrate that fetal central nervous system (CNS) material can be studied electrophysiologically without growing tissue in culture. Our results suggest that the newly differentiated hippocampal neurons have a limited repertoire of activities. Such data may provide a link between in vivo studies of postnatal CNS development and cell and tissue culture investigations of the properties of immature neurons.

Back to top

In this issue

Journal of Neuroscience
Vol. 2, Issue 4
1 Apr 1982
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Electrophysiology and morphology of the developing hippocampus of fetal rabbits
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Electrophysiology and morphology of the developing hippocampus of fetal rabbits
PA Schwartzkroin, DD Kunkel
Journal of Neuroscience 1 April 1982, 2 (4) 448-462; DOI: 10.1523/JNEUROSCI.02-04-00448.1982

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Electrophysiology and morphology of the developing hippocampus of fetal rabbits
PA Schwartzkroin, DD Kunkel
Journal of Neuroscience 1 April 1982, 2 (4) 448-462; DOI: 10.1523/JNEUROSCI.02-04-00448.1982
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.