Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Orientation of neurite growth by extracellular electric fields

N Patel and MM Poo
Journal of Neuroscience 1 April 1982, 2 (4) 483-496; https://doi.org/10.1523/JNEUROSCI.02-04-00483.1982
N Patel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MM Poo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Extracellularly applied steady electric fields of 0.1 to 10 V/cm were found to have marked effects on the neurite growth of single dissociated Xenopus neurons in culture: (1) neurites facing the cathode showed accelerated growth, while the growth of those facing the anode was reduced. Neurites growing relatively perpendicular to the field axis were prompted to curve toward the cathode. (2) More neurites appeared to be initiate from the cathodal side of the cell. (3) The number of neurite-bearing neurons per culture and the average neurite length were increased. These effects are absent in cultures treated with electric fields of similar strength but alternating polarity and cannot be attributed either to a gradient of extracellular diffusible substances or to the flow of culture medium produced by the field. The field effects are reversible: (1) removal of the electric field resulted in the loss of neurite orientation in a few hours and (2) reversal of the polarity of the electric field led to a rapid reversal in the neurite orientation. To determine the cellular loci of these field effects, we treated the neurons with a number of pharmacological agents or altered their ionic environments. Incubation with concanavalin A (Con A) was found to abolish these filed effects completely. Since the binding of Con A to the neuronal surface was shown to prevent field-induced accumulation of the Con A receptors toward the cathodal side of these neurons, our finding is accumulation of the Con A receptors toward the cathodal side of these neurons, our finding is consistent with the notion that cathodal accumulation of growth-controlling surface glycoproteins by the field is the underlying mechanism of the field-induced orientation of neurite growth toward the cathode.

Back to top

In this issue

Journal of Neuroscience
Vol. 2, Issue 4
1 Apr 1982
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Orientation of neurite growth by extracellular electric fields
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Orientation of neurite growth by extracellular electric fields
N Patel, MM Poo
Journal of Neuroscience 1 April 1982, 2 (4) 483-496; DOI: 10.1523/JNEUROSCI.02-04-00483.1982

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Orientation of neurite growth by extracellular electric fields
N Patel, MM Poo
Journal of Neuroscience 1 April 1982, 2 (4) 483-496; DOI: 10.1523/JNEUROSCI.02-04-00483.1982
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.