Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

A primary acoustic startle circuit: lesion and stimulation studies

M Davis, DS Gendelman, MD Tischler and PM Gendelman
Journal of Neuroscience 1 June 1982, 2 (6) 791-805; https://doi.org/10.1523/JNEUROSCI.02-06-00791.1982
M Davis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DS Gendelman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MD Tischler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PM Gendelman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The latency of the acoustic startle reflex in the rat is 8 msec, measured from tone onset to the beginning of the electromyographic response in the hindleg. This extremely short latency indicates that only a few synapses could be involved in some primary acoustic startle circuit. Acoustic startle is being used as a model system for studying habituation, sensitization, prepulse inhibition, classical conditioning, fear or anxiety, and drug effects on behavior. The present study attempted to delineate a short latency acoustic startle circuit, since this would provide critical information for further study in all of these areas. Bilateral lesions of the ventral cochlear nucleus, which receives the primary auditory input, abolish acoustic startle. Electrical, single pulse stimulation of the ventral cochlear nucleus elicits startle-like responses with a latency of about 7 msec. Bilateral lesions of the dorsal and ventral nuclei of the lateral lemniscus, which receive direct input from the ventral cochlear nuclei, abolish acoustic startle. Electrical stimulation of these nuclei elicits startle-like responses with a latency of about 6 msec. Bilateral lesions of ventral regions of the nucleus reticularis pontis caudalis, which contain cell bodies that give rise to the reticulospinal tract, abolish acoustic startle. Electrical stimulation of these points elicits startle-like responses with a latency of about 5 msec. Reaction product from horseradish peroxidase iontophoresed into this area is found in the nuclei of the lateral lemniscus. In contrast, lesions of the dorsal cochlear nuclei, vestibular nuclei, nucleus reticularis pontis oralis, nucleus reticularis gigantocellularis, and dorsal regions of the nucleus reticularis pontis caudalis fail to abolish acoustic startle. Also, “startle” cannot be elicited electrically from these areas. The data suggest that a primary acoustic startle circuit in the rat consists of auditory nerve, ventral cochlear nucleus, nuclei of the lateral lemniscus, nucleus reticularis pontis caudalis, spinal interneuron, lower motor neuron, and muscles. Hence, five synapses, plus the neuromuscular junction, are probably involved.

Back to top

In this issue

The Journal of Neuroscience: 2 (6)
Journal of Neuroscience
Vol. 2, Issue 6
1 Jun 1982
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A primary acoustic startle circuit: lesion and stimulation studies
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A primary acoustic startle circuit: lesion and stimulation studies
M Davis, DS Gendelman, MD Tischler, PM Gendelman
Journal of Neuroscience 1 June 1982, 2 (6) 791-805; DOI: 10.1523/JNEUROSCI.02-06-00791.1982

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A primary acoustic startle circuit: lesion and stimulation studies
M Davis, DS Gendelman, MD Tischler, PM Gendelman
Journal of Neuroscience 1 June 1982, 2 (6) 791-805; DOI: 10.1523/JNEUROSCI.02-06-00791.1982
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.