Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Distribution of protein I and regulation of its state of phosphorylation in the rabbit superior cervical ganglion

EJ Nestler and P Greengard
Journal of Neuroscience 1 August 1982, 2 (8) 1011-1023; DOI: https://doi.org/10.1523/JNEUROSCI.02-08-01011.1982
EJ Nestler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Greengard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The distribution and regulation of the state of phosphorylation of Protein I have been studied in the rabbit superior cervical sympathetic ganglion. The data indicate that the ganglion contains two pools of Protein I: a presynaptic pool that represents 60% of the total ganglion Protein I and a postsynaptic pool that represents 40% of the total ganglion Protein I. The state of phosphorylation of presynaptic Protein I, but not that of postsynaptic Protein I, is regulated by nerve impulse conduction, by dopamine, and by a high K+ concentration. Studies of the extracellular calcium requirements for Protein I phosphorylation, as well as peptide-mapping analyses of Protein I, suggest that the effects of nerve impulse conduction and of a high K+ concentration are mediated through the activation of calcium-dependent protein kinases and that the effect of dopamine is mediated through the activation of cyclic AMP-dependent protein kinase. The total amount of postsynaptic Protein I, but not that of presynaptic Protein I, is decreased by short periods of exposure to cycloheximide, a protein synthesis inhibitor. It is proposed that Protein I located in presynaptic nerve terminals plays a functional role in those terminals and that the Protein I located in cell bodies is newly synthesized and en route to nerve terminals.

Back to top

In this issue

The Journal of Neuroscience: 2 (8)
Journal of Neuroscience
Vol. 2, Issue 8
1 Aug 1982
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Distribution of protein I and regulation of its state of phosphorylation in the rabbit superior cervical ganglion
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Distribution of protein I and regulation of its state of phosphorylation in the rabbit superior cervical ganglion
EJ Nestler, P Greengard
Journal of Neuroscience 1 August 1982, 2 (8) 1011-1023; DOI: 10.1523/JNEUROSCI.02-08-01011.1982

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Distribution of protein I and regulation of its state of phosphorylation in the rabbit superior cervical ganglion
EJ Nestler, P Greengard
Journal of Neuroscience 1 August 1982, 2 (8) 1011-1023; DOI: 10.1523/JNEUROSCI.02-08-01011.1982
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Subjects

  • Paul Greengard
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.