Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
ARTICLE, Behavioral/Systems

Functional Magnetic Resonance Imaging (fMRI) Activity in the Hippocampal Region during Recognition Memory

Craig E. L. Stark and Larry R. Squire
Journal of Neuroscience 15 October 2000, 20 (20) 7776-7781; https://doi.org/10.1523/JNEUROSCI.20-20-07776.2000
Craig E. L. Stark
1University of California, San Diego, California 92093, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Larry R. Squire
1University of California, San Diego, California 92093, and
2Veterans Affairs Medical Center, San Diego, California 92161
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neuroimaging studies have often failed to observe activity in the hippocampal region during memory retrieval. Recently, two functional magnetic resonance imaging studies reported activity in the hippocampal region associated with recollective success. In both, participants studied pictures of objects and were given a recognition memory test with words that either did or did not name the studied objects. The recognition test was therefore cross-modal or associative in nature. These findings raise the question of what circumstances are required to observe activity in the hippocampal region during memory retrieval. Here, we report that robust hippocampal activity for targets relative to foils occurred during retrieval in a recognition memory task when single words were used at both study and test, as well as when pictures of single nameable objects were used at both study and test. The hippocampal region is involved not just in overtly associative tasks but more broadly in the recollection of recently occurring facts and events.

  • recognition memory
  • fMRI
  • hippocampus
  • declarative memory
  • amnesia
  • associations
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 20 (20)
Journal of Neuroscience
Vol. 20, Issue 20
15 Oct 2000
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional Magnetic Resonance Imaging (fMRI) Activity in the Hippocampal Region during Recognition Memory
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Functional Magnetic Resonance Imaging (fMRI) Activity in the Hippocampal Region during Recognition Memory
Craig E. L. Stark, Larry R. Squire
Journal of Neuroscience 15 October 2000, 20 (20) 7776-7781; DOI: 10.1523/JNEUROSCI.20-20-07776.2000

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Functional Magnetic Resonance Imaging (fMRI) Activity in the Hippocampal Region during Recognition Memory
Craig E. L. Stark, Larry R. Squire
Journal of Neuroscience 15 October 2000, 20 (20) 7776-7781; DOI: 10.1523/JNEUROSCI.20-20-07776.2000
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • recognition memory
  • fMRI
  • hippocampus
  • declarative memory
  • amnesia
  • associations

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Intracranially Administered Anti-Αβ Antibodies Reduce β-Amyloid Deposition by Mechanisms Both Independent of and Associated with Microglial Activation
  • Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus
  • Distinct Developmental Modes and Lesion-Induced Reactions of Dendrites of Two Classes of Drosophila Sensory Neurons
Show more ARTICLE

Behavioral/Systems

  • Enhancement of Signal-to-Noise Ratio and Phase Locking for Small Inputs by a Low-Threshold Outward Current in Auditory Neurons
  • Inhibition of cAMP Response Element-Binding Protein or Dynorphin in the Nucleus Accumbens Produces an Antidepressant-Like Effect
  • Sensitivity to Instrumental Contingency Degradation Is Mediated by the Entorhinal Cortex and Its Efferents via the Dorsal Hippocampus
Show more Behavioral/Systems
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.