Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
ARTICLE, Cellular/Molecular

Potentiated Opioid Analgesia in Norepinephrine Transporter Knock-Out Mice

Laura M. Bohn, Fei Xu, Raul R. Gainetdinov and Marc G. Caron
Journal of Neuroscience 15 December 2000, 20 (24) 9040-9045; DOI: https://doi.org/10.1523/JNEUROSCI.20-24-09040.2000
Laura M. Bohn
1Howard Hughes Medical Institute, Departments of Cell Biology and Medicine, Duke University Medical Center, Durham, North Carolina 27710
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fei Xu
1Howard Hughes Medical Institute, Departments of Cell Biology and Medicine, Duke University Medical Center, Durham, North Carolina 27710
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Raul R. Gainetdinov
1Howard Hughes Medical Institute, Departments of Cell Biology and Medicine, Duke University Medical Center, Durham, North Carolina 27710
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marc G. Caron
1Howard Hughes Medical Institute, Departments of Cell Biology and Medicine, Duke University Medical Center, Durham, North Carolina 27710
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Several studies have shown that activation of α2-adrenergic receptors (α2ARs) leads to mild analgesic effects. Tricyclic antidepressants (TCAs), such as desipramine (DMI), which block norepinephrine transporters (NETs), also produce mild antinociception. The coadministration of either α2AR agonists or TCAs with opiates produces synergistically potentiated antinociception. It has been postulated that the analgesic effects of TCAs are determined by their ability to inhibit norepinephrine reuptake via interactions with the NET. To test this idea, we studied mice lacking a functional NET in spontaneous and morphine-induced antinociceptive paradigms. Morphine (10 mg/kg, s.c.) treatment produced greater analgesia, as assayed in the warm water tail-flick assay, in NET-knock-out (-KO) mice than in wild-type (WT) mice. As anticipated, yohimbine, an inhibitor of α2ARs, blocked this potentiation. Moreover, a warm water swim-stress paradigm, which is known to induce the release of endogenous opioids, produced greater antinociception in NET-KO than in the WT mice. Naloxone, an inhibitor of opioid receptors, blocked the development of the swim-evoked analgesia in both WT and NET-KO mice, confirming the involvement of the endogenous opioid system. In the NET-KO mice, DMI did not further enhance analgesia but was still able to produce inhibitory effects on the locomotor activity of these mutants, suggesting that the effects of this TCA are not exclusively via interactions with the NET. In summary, these results demonstrate in a genetic model that both endogenous and exogenous opiate-mediated analgesia can be enhanced by elimination of the NET, indicating that the interaction of TCAs with NET mediates these effects.

  • adrenergic
  • monoamine transporters
  • opiates
  • opioid receptors
  • antinociception
  • tricyclic antidepressants
  • desipramine
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 20 (24)
Journal of Neuroscience
Vol. 20, Issue 24
15 Dec 2000
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Potentiated Opioid Analgesia in Norepinephrine Transporter Knock-Out Mice
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Potentiated Opioid Analgesia in Norepinephrine Transporter Knock-Out Mice
Laura M. Bohn, Fei Xu, Raul R. Gainetdinov, Marc G. Caron
Journal of Neuroscience 15 December 2000, 20 (24) 9040-9045; DOI: 10.1523/JNEUROSCI.20-24-09040.2000

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Potentiated Opioid Analgesia in Norepinephrine Transporter Knock-Out Mice
Laura M. Bohn, Fei Xu, Raul R. Gainetdinov, Marc G. Caron
Journal of Neuroscience 15 December 2000, 20 (24) 9040-9045; DOI: 10.1523/JNEUROSCI.20-24-09040.2000
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • adrenergic
  • monoamine transporters
  • opiates
  • opioid receptors
  • antinociception
  • tricyclic antidepressants
  • desipramine

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus
  • Sp1 and Sp3 Are Oxidative Stress-Inducible, Antideath Transcription Factors in Cortical Neurons
  • Distinct Developmental Modes and Lesion-Induced Reactions of Dendrites of Two Classes of Drosophila Sensory Neurons
Show more ARTICLE

Cellular/Molecular

  • Calcium channel-dependent induction of long-term synaptic plasticity at excitatory Golgi cell synapses of cerebellum
  • Pathogenic GRM7 mutations associated with neurodevelopmental disorders impair axon outgrowth and presynaptic terminal development
  • Tuba activates Cdc42 during neuronal polarization downstream of the small GTPase Rab8a
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.