Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
ARTICLE, Cellular/Molecular

The Presynaptic Function of Mouse Cochlear Inner Hair Cells during Development of Hearing

Dirk Beutner and Tobias Moser
Journal of Neuroscience 1 July 2001, 21 (13) 4593-4599; DOI: https://doi.org/10.1523/JNEUROSCI.21-13-04593.2001
Dirk Beutner
1Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany, and Department of Otolaryngology, Göttingen University Medical School, Robert Koch Strasse, 37073 Göttingen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tobias Moser
1Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany, and Department of Otolaryngology, Göttingen University Medical School, Robert Koch Strasse, 37073 Göttingen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Before mice start to hear at approximately postnatal day 10, their cochlear inner hair cells (IHCs) spontaneously generate Ca2+ action potentials. Therefore, immature IHCs could stimulate the auditory pathway, provided that they were already competent for transmitter release. Here, we combined patch-clamp capacitance measurements and fluorimetric [Ca2+]i recordings to study the presynaptic function of IHCs during cochlear maturation. Ca2+-dependent exocytosis and subsequent endocytic membrane retrieval were already observed near the date of birth. Ca2+ action potentials triggered exocytosis in immature IHCs, which probably activates the auditory pathway before it becomes responsive to sound. IHCs underwent profound changes in Ca2+-channel expression and secretion during their postnatal development. Ca2+-channel expression increased toward the end of the first week, providing for large secretory responses during this period and thereafter declined to reach mature levels. The efficacy whereby Ca2+ influx triggers exocytosis increased toward maturation, such that vesicle fusion caused by a given Ca2+ current occurred faster in mature IHCs. The observed changes in Ca2+-channel expression and synaptic efficacy probably reflected the ongoing synaptogenesis in IHCs that had been described previously in morphological studies.

  • synapse
  • exocytosis
  • hair cell
  • cochlea
  • capacitance
  • calcium
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 21 (13)
Journal of Neuroscience
Vol. 21, Issue 13
1 Jul 2001
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Presynaptic Function of Mouse Cochlear Inner Hair Cells during Development of Hearing
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
The Presynaptic Function of Mouse Cochlear Inner Hair Cells during Development of Hearing
Dirk Beutner, Tobias Moser
Journal of Neuroscience 1 July 2001, 21 (13) 4593-4599; DOI: 10.1523/JNEUROSCI.21-13-04593.2001

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The Presynaptic Function of Mouse Cochlear Inner Hair Cells during Development of Hearing
Dirk Beutner, Tobias Moser
Journal of Neuroscience 1 July 2001, 21 (13) 4593-4599; DOI: 10.1523/JNEUROSCI.21-13-04593.2001
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • synapse
  • exocytosis
  • hair cell
  • cochlea
  • capacitance
  • calcium

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Functional Hemichannels in Astrocytes: A Novel Mechanism of Glutamate Release
  • Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus
  • Distinct Developmental Modes and Lesion-Induced Reactions of Dendrites of Two Classes of Drosophila Sensory Neurons
Show more ARTICLE

Cellular/Molecular

  • Tuba activates Cdc42 during neuronal polarization downstream of the small GTPase Rab8a
  • Exacerbation of epilepsy by astrocyte alkalization and gap junction uncoupling.
  • An Autism-Associated Mutation Impairs Neuroligin-4 Glycosylation and Enhances Excitatory Synaptic Transmission in Human Neurons
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.