Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
PreviousNext
ARTICLE, Cellular/Molecular

Activation of Metabotropic Glutamate Receptor 1 Accelerates NMDA Receptor Trafficking

Jian-yu Lan, Vytenis A. Skeberdis, Teresa Jover, Xin Zheng, Michael V. L. Bennett and R. Suzanne Zukin
Journal of Neuroscience 15 August 2001, 21 (16) 6058-6068; DOI: https://doi.org/10.1523/JNEUROSCI.21-16-06058.2001
Jian-yu Lan
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vytenis A. Skeberdis
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Teresa Jover
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xin Zheng
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael V. L. Bennett
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Suzanne Zukin
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Regulation of neuronal NMDA receptors (NMDARs) by group I metabotropic glutamate receptors (mGluRs) is known to play a critical role in synaptic transmission. The molecular mechanisms underlying mGluR1-mediated potentiation of NMDARs are as yet unclear. The present study shows that in Xenopus oocytes expressing recombinant receptors, activation of mGluR1 potentiates NMDA channel activity by recruitment of new channels to the plasma membrane via regulated exocytosis. Activation of mGluR1α induced (1) an increase in channel number times channel open probability, with no change in mean open time, unitary conductance, or reversal potential; (2) an increase in charge transfer in the presence of NMDA and the open channel blocker MK-801, indicating an increased number of functional NMDARs in the cell membrane; and (3) increased NR1 surface expression, as indicated by cell surface Western blots and immunofluorescence. Botulinum neurotoxin A or expression of a dominant negative mutant of synaptosomal associated protein of 25 kDa molelcular mass (SNAP-25) greatly reduced mGluR1α-mediated potentiation, indicating that receptor trafficking occurs via a SNAP-25-mediated form of soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor-dependent exocytosis. Because group I mGluRs are localized to the perisynaptic region in juxtaposition to synaptic NMDARs at glutamatergic synapses in the hippocampus, mGluR-mediated insertion of NMDARs may play a role in synaptic transmission and plasticity, including long-term potentiation.

  • metabotropic glutamate receptors
  • NMDA receptors
  • receptor trafficking
  • channel gating
  • protein kinase C
  • (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid
  • ACPD
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 21 (16)
Journal of Neuroscience
Vol. 21, Issue 16
15 Aug 2001
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Activation of Metabotropic Glutamate Receptor 1 Accelerates NMDA Receptor Trafficking
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Activation of Metabotropic Glutamate Receptor 1 Accelerates NMDA Receptor Trafficking
Jian-yu Lan, Vytenis A. Skeberdis, Teresa Jover, Xin Zheng, Michael V. L. Bennett, R. Suzanne Zukin
Journal of Neuroscience 15 August 2001, 21 (16) 6058-6068; DOI: 10.1523/JNEUROSCI.21-16-06058.2001

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Activation of Metabotropic Glutamate Receptor 1 Accelerates NMDA Receptor Trafficking
Jian-yu Lan, Vytenis A. Skeberdis, Teresa Jover, Xin Zheng, Michael V. L. Bennett, R. Suzanne Zukin
Journal of Neuroscience 15 August 2001, 21 (16) 6058-6068; DOI: 10.1523/JNEUROSCI.21-16-06058.2001
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • metabotropic glutamate receptors
  • NMDA receptors
  • receptor trafficking
  • channel gating
  • protein kinase C
  • (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid
  • ACPD

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Functional Hemichannels in Astrocytes: A Novel Mechanism of Glutamate Release
  • Heme Oxygenase-2 Protects against Lipid Peroxidation-Mediated Cell Loss and Impaired Motor Recovery after Traumatic Brain Injury
  • Gene Microarrays in Hippocampal Aging: Statistical Profiling Identifies Novel Processes Correlated with Cognitive Impairment
Show more ARTICLE

Cellular/Molecular

  • Suppression of Presynaptic Glutamate Release by Postsynaptic Metabotropic NMDA Receptor Signalling to Pannexin-1
  • Npas1+-Nkx2.1+ Neurons Are an Integral Part of the Cortico-pallido-cortical Loop
  • The NGFR100W Mutation Specifically Impairs Nociception without Affecting Cognitive Performance in a Mouse Model of Hereditary Sensory and Autonomic Neuropathy Type V
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2019 by the Society for Neuroscience.
JNeurosci   Print ISSN: 0270-6474   Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.