Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
ARTICLE, Development/Plasticity/Repair

Regulation of Dendritic Spine Motility in Cultured Hippocampal Neurons

Eduard Korkotian and Menahem Segal
Journal of Neuroscience 15 August 2001, 21 (16) 6115-6124; DOI: https://doi.org/10.1523/JNEUROSCI.21-16-06115.2001
Eduard Korkotian
1Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Menahem Segal
1Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Regulation of dendritic spine motility was studied in dissociated cultures of the rat and mouse hippocampus, using green fluorescent protein-labeled neurons or neurons loaded with the calcium-sensitive dye Oregon Green-1. Cells were time-lapse-photographed on a confocal laser-scanning microscope at high resolution to detect movements as well as spontaneous fluctuations of intracellular calcium concentrations in their dendritic spines. Active presynaptic terminals attached to the spines were labeled with FM4-64, which marks a subset of synaptophysin-labeled terminals. Dendritic spines were highly motile in young, 4- to 7-d-old cells. At this age, neurons had little spontaneous calcium fluctuation or FM4-64 labeling. Within 2–3 weeks in culture, dendritic spines were much less motile, they were associated with active presynaptic terminals, and they expressed high rates of spontaneous calcium fluctuations. Irrespective of age, and even on the same dendrite, there was an inverse relationship between spine motility and presence of FM4-64-labeled terminals in contact with the imaged spines. Spine motility was blocked by latrunculin, which prevents actin polymerization, and was disinhibited by blockade of action potential discharges with tetrodotoxin. It is proposed that an active presynaptic terminal restricts motility of dendritic spines.

  • dendritic spines
  • confocal microscope
  • EGFP
  • FM4-64
  • calcium
  • actin
  • latrunculin
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 21 (16)
Journal of Neuroscience
Vol. 21, Issue 16
15 Aug 2001
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of Dendritic Spine Motility in Cultured Hippocampal Neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Regulation of Dendritic Spine Motility in Cultured Hippocampal Neurons
Eduard Korkotian, Menahem Segal
Journal of Neuroscience 15 August 2001, 21 (16) 6115-6124; DOI: 10.1523/JNEUROSCI.21-16-06115.2001

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Regulation of Dendritic Spine Motility in Cultured Hippocampal Neurons
Eduard Korkotian, Menahem Segal
Journal of Neuroscience 15 August 2001, 21 (16) 6115-6124; DOI: 10.1523/JNEUROSCI.21-16-06115.2001
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • dendritic spines
  • confocal microscope
  • EGFP
  • FM4-64
  • calcium
  • actin
  • latrunculin

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Functional Hemichannels in Astrocytes: A Novel Mechanism of Glutamate Release
  • Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus
  • Distinct Developmental Modes and Lesion-Induced Reactions of Dendrites of Two Classes of Drosophila Sensory Neurons
Show more ARTICLE

Development/Plasticity/Repair

  • The Wnt effector TCF7l2 promotes oligodendroglial differentiation by repressing autocrine BMP4-mediated signaling
  • HIFα Regulates Developmental Myelination Independent of Autocrine Wnt Signaling
  • Evidence for Subcortical Plasticity after Paired Stimulation from a Wearable Device
Show more Development/Plasticity/Repair
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.