Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
ARTICLE, Behavioral/Systems

Correlation of AMPA Receptor Subunit Composition with Synaptic Input in the Mammalian Cochlear Nuclei

Stephanie M. Gardner, Laurence O. Trussell and Donata Oertel
Journal of Neuroscience 15 September 2001, 21 (18) 7428-7437; DOI: https://doi.org/10.1523/JNEUROSCI.21-18-07428.2001
Stephanie M. Gardner
1Department of Physiology, University of Wisconsin Medical School-Madison, Madison, Wisconsin 53706, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laurence O. Trussell
2Oregon Hearing Research Center, Vollum Institute, Oregon Health and Science University, Portland, Oregon 97201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donata Oertel
1Department of Physiology, University of Wisconsin Medical School-Madison, Madison, Wisconsin 53706, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The composition of AMPA receptors in patches excised from somata and dendrites of six cell types in the mammalian cochlear nuclei was probed and compared electrophysiologically and pharmacologically with the rapid application of glutamate. Cells excited predominantly by auditory nerve fibers had AMPA receptors with exceptionally rapid gating (submillisecond deactivation and desensitization time constants). The nonlinear current–voltage relationship in the presence of spermine showed that few of these receptors had GluR2 subunits, and the insensitivity of desensitization to cyclothiazide indicated that they contained mostly flop splice variants. At synapses made by parallel fibers, AMPA receptors were slowly gating (time constants of deactivation and desensitization >1 msec) and contained higher levels of GluR2 and flip isoforms. However, receptors at auditory nerve synapses on cells that also receive parallel fiber input, the fusiform cells, had intermediate properties with respect to kinetics and contained GluR2 and flip isoforms. Given the diverse biophysical properties, patterns of innervation, patterns of electrical activity, and targets of each cell type in vivo, these data indicate that the kinetics and permeation properties of AMPA receptors are linked to factors associated with synaptic connectivity.

  • AMPA receptor
  • auditory pathways
  • GluR2
  • polyamine
  • rectification
  • kinetics
  • flop
  • cochlear nuclei
  • cyclothiazide
  • deactivation
  • desensitization
  • targeting
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 21 (18)
Journal of Neuroscience
Vol. 21, Issue 18
15 Sep 2001
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Correlation of AMPA Receptor Subunit Composition with Synaptic Input in the Mammalian Cochlear Nuclei
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Correlation of AMPA Receptor Subunit Composition with Synaptic Input in the Mammalian Cochlear Nuclei
Stephanie M. Gardner, Laurence O. Trussell, Donata Oertel
Journal of Neuroscience 15 September 2001, 21 (18) 7428-7437; DOI: 10.1523/JNEUROSCI.21-18-07428.2001

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Correlation of AMPA Receptor Subunit Composition with Synaptic Input in the Mammalian Cochlear Nuclei
Stephanie M. Gardner, Laurence O. Trussell, Donata Oertel
Journal of Neuroscience 15 September 2001, 21 (18) 7428-7437; DOI: 10.1523/JNEUROSCI.21-18-07428.2001
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • AMPA receptor
  • auditory pathways
  • GluR2
  • polyamine
  • rectification
  • kinetics
  • flop
  • cochlear nuclei
  • cyclothiazide
  • deactivation
  • desensitization
  • targeting

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Dynamic GABAA Receptor Subtype-Specific Modulation of the Synchrony and Duration of Thalamic Oscillations
  • Long-Term Depression Is Not Induced by Low-Frequency Stimulation in Rat Visual Cortex In Vivo: A Possible Preventing Role of Endogenous Brain-Derived Neurotrophic Factor
  • Electrophysiological Imaging of Functional Architecture in the Cortical Middle Temporal Visual Area of Cebus apella Monkey
Show more ARTICLE

Behavioral/Systems

  • Efferent Protection from Acoustic Injury Is Mediated via α9 Nicotinic Acetylcholine Receptors on Outer Hair Cells
  • Attenuation of Nicotine-Induced Antinociception, Rewarding Effects, and Dependence in μ-Opioid Receptor Knock-Out Mice
  • Electroconvulsive Seizure Behavior in Drosophila: Analysis of the Physiological Repertoire Underlying a Stereotyped Action Pattern in Bang-Sensitive Mutants
Show more Behavioral/Systems
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.