Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
ARTICLE, Behavioral/Systems

Voltage-Sensitive Dye Imaging of Neocortical Spatiotemporal Dynamics to Afferent Activation Frequency

Diego Contreras and Rodolfo Llinás
Journal of Neuroscience 1 December 2001, 21 (23) 9403-9413; https://doi.org/10.1523/JNEUROSCI.21-23-09403.2001
Diego Contreras
1Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rodolfo Llinás
2Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The spatial and temporal patterns of neocortex activation are determined not only by the dynamic character of the input but also by the intrinsic dynamics of the cortical circuitry. To study the role of afferent input frequency on cortical activation dynamics, the electrical activity of in vitro neocortex slices was imaged during white-matter electrical stimulation. High-speed optical imaging was implemented using voltage-sensitive dyes in guinea pig visual and somatosensory cortex slices concomitantly with intracellular recordings. Single white-matter electrical stimuli activated well-defined cortical sites with a radially oriented columnar configuration. This configuration was followed, over the next few milliseconds, by a lateral spread of excitation through cortical layers 5 and 6 and layers 2 and 3. Much of the optical response was eliminated in low extracellular calcium, indicating that it was primarily synaptically mediated.

Repetitive stimuli at 10 Hz reproduced the spatiotemporal pattern observed for single stimuli. In contrast, repetitive stimulation in the γ frequency range (∼40 Hz) rapidly restrained the area of excitation to a small columnar site directly above the stimulating electrode. Intracellular recordings from cells lateral to the activated column revealed increased inhibitory synaptic activity and/or decreased excitatory responses during the train at 40 Hz, but not during a 10 Hz stimulation. Localized microinjections of GABAA antagonist produced a reorganization of the geometrical activity pattern that was dependent on the position of the microinjection site. These findings indicate that the frequency-dependent spatial organization of neocortex activation is determined by inhibitory sculpting attributable to local network dynamics.

  • optical
  • fluorescence
  • intracellular
  • cortex
  • voltage-sensitive dyes
  • γ
  • binding
  • 40 Hz
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 21 (23)
Journal of Neuroscience
Vol. 21, Issue 23
1 Dec 2001
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Voltage-Sensitive Dye Imaging of Neocortical Spatiotemporal Dynamics to Afferent Activation Frequency
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Voltage-Sensitive Dye Imaging of Neocortical Spatiotemporal Dynamics to Afferent Activation Frequency
Diego Contreras, Rodolfo Llinás
Journal of Neuroscience 1 December 2001, 21 (23) 9403-9413; DOI: 10.1523/JNEUROSCI.21-23-09403.2001

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Voltage-Sensitive Dye Imaging of Neocortical Spatiotemporal Dynamics to Afferent Activation Frequency
Diego Contreras, Rodolfo Llinás
Journal of Neuroscience 1 December 2001, 21 (23) 9403-9413; DOI: 10.1523/JNEUROSCI.21-23-09403.2001
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • optical
  • fluorescence
  • intracellular
  • cortex
  • voltage-sensitive dyes
  • γ
  • binding
  • 40 Hz

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Estrogen Modulates the Visceromotor Reflex and Responses of Spinal Dorsal Horn Neurons to Colorectal Stimulation in the Rat
  • Sp1 and Sp3 Are Oxidative Stress-Inducible, Antideath Transcription Factors in Cortical Neurons
  • Phosphatidylinositol 3-Kinase Regulates the Induction of Long-Term Potentiation through Extracellular Signal-Related Kinase-Independent Mechanisms
Show more ARTICLE

Behavioral/Systems

  • Sensitivity to Instrumental Contingency Degradation Is Mediated by the Entorhinal Cortex and Its Efferents via the Dorsal Hippocampus
  • Highly Variable Spike Trains Underlie Reproducible Sensorimotor Responses in the Medicinal Leech
  • The Contribution of the Amygdala to Conditioned Thalamic Arousal
Show more Behavioral/Systems
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.