Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
ARTICLE, Behavioral/Systems

Visual Pathways Involved in Fear Conditioning Measured with Fear-Potentiated Startle: Behavioral and Anatomic Studies

Changjun Shi and Michael Davis
Journal of Neuroscience 15 December 2001, 21 (24) 9844-9855; DOI: https://doi.org/10.1523/JNEUROSCI.21-24-09844.2001
Changjun Shi
1Department of Psychiatry and Behavior Science and Center for Behavior Neuroscience, Emory University School of Medicine, Atlanta, Georgia 30322
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Davis
1Department of Psychiatry and Behavior Science and Center for Behavior Neuroscience, Emory University School of Medicine, Atlanta, Georgia 30322
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Visual pathways to the amygdala, a brain structure critical for classical fear conditioning, were investigated. Conditioned fear was measured in rats as increased acoustic startle amplitude in the presence versus absence of a light or an odor paired previously with foot shock (fear-potentiated startle). Post-training lesions of both the lateral geniculate body (LG) and lateral posterior nucleus (LP) of the thalamus together, but not lesions of LG or LP alone, completely blocked the expression of fear-potentiated startle to a visual conditioned stimulus (CS) but not to an olfactory CS. These lesions also did not block contextual fear conditioning using startle or freezing as measures. Local infusion of 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f] quinoxaline-7-sulfonamide disodium, an AMPA antagonist, into the visual thalamus immediately before testing also blocked fear-potentiated startle to a visual CS, suggesting that the lesion effects were not attributable to damage of fibers of passage. Iontophoretic injections into the LP of the anterograde tracer biotinylated dextran amine resulted in heavy anterograde labeling in two amygdala–fugal cortical areas: area TE2 and dorsal perirhinal cortex (PR), and moderate labeling in the lateral amygdaloid nucleus (L). These results suggest that, during classical fear conditioning, a visual stimulus can be transmitted to the amygdala via either lemniscal (i.e., LG → V1, V2 → TE2/PR) or non-lemniscal (i.e., LP → V2, TE2/PR) thalamo-cortico-amygdala pathways, or direct thalamo-amygdala (i.e., LP → L) projections.

  • fear
  • conditioning
  • amygdala
  • visual thalamus
  • perirhinal cortex
  • startle
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 21 (24)
Journal of Neuroscience
Vol. 21, Issue 24
15 Dec 2001
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Visual Pathways Involved in Fear Conditioning Measured with Fear-Potentiated Startle: Behavioral and Anatomic Studies
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Visual Pathways Involved in Fear Conditioning Measured with Fear-Potentiated Startle: Behavioral and Anatomic Studies
Changjun Shi, Michael Davis
Journal of Neuroscience 15 December 2001, 21 (24) 9844-9855; DOI: 10.1523/JNEUROSCI.21-24-09844.2001

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Visual Pathways Involved in Fear Conditioning Measured with Fear-Potentiated Startle: Behavioral and Anatomic Studies
Changjun Shi, Michael Davis
Journal of Neuroscience 15 December 2001, 21 (24) 9844-9855; DOI: 10.1523/JNEUROSCI.21-24-09844.2001
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • fear
  • conditioning
  • amygdala
  • visual thalamus
  • perirhinal cortex
  • startle

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Intracranially Administered Anti-Αβ Antibodies Reduce β-Amyloid Deposition by Mechanisms Both Independent of and Associated with Microglial Activation
  • Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus
  • Calcium Influx via L- and N-Type Calcium Channels Activates a Transient Large-Conductance Ca2+-Activated K+Current in Mouse Neocortical Pyramidal Neurons
Show more ARTICLE

Behavioral/Systems

  • Vocal Control Neuron Incorporation Decreases with Age in the Adult Zebra Finch
  • Modulation by Central and Basolateral Amygdalar Nuclei of Dopaminergic Correlates of Feeding to Satiety in the Rat Nucleus Accumbens and Medial Prefrontal Cortex
  • Confocal Analysis of Reciprocal Feedback at Rod Bipolar Terminals in the Rabbit Retina
Show more Behavioral/Systems
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.