Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
ARTICLE, Development/Plasticity/Repair

Brief Treatments with Forskolin Enhance S-Phase Entry in Balance Epithelia from the Ears of Rats

Mireille Montcouquiol and Jeffrey T. Corwin
Journal of Neuroscience 1 February 2001, 21 (3) 974-982; DOI: https://doi.org/10.1523/JNEUROSCI.21-03-00974.2001
Mireille Montcouquiol
1Department of Otolaryngology–Head, Neck, and Surgery and Department of Neuroscience, University of Virginia, School of Medicine, Charlottesville, Virginia 22908
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey T. Corwin
1Department of Otolaryngology–Head, Neck, and Surgery and Department of Neuroscience, University of Virginia, School of Medicine, Charlottesville, Virginia 22908
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the ears of mammals, hair cell loss results in permanent hearing and balance deficits, whereas in fish, amphibians, and birds, the production of replacement hair cells can restore those modalities. In avian ears, continuous exposures to forskolin trigger cell proliferation and the regeneration of hair cells, so we investigated the effect of forskolin on sensory epithelia cultured from the ears of mammals. Continuous 72 hr exposures to forskolin failed to induce proliferation in neonatal rat utricles, but brief (≤1 hr) exposures to forskolin or Br-cAMP did. Proliferation occurred only in media that contained serum. Forskolin also augmented the mitogenic effects of glial growth factor 2. The S-phase entry induced by forskolin was blocked by monensin and bafilomycin, two compounds that can inhibit the recycling of membrane receptors. The results are consistent with the hypothesis that in mammalian vestibular epithelia elevated cAMP induces S-phase entry by increasing the number of growth factor receptors at the plasma membrane.

  • regeneration
  • hair cells
  • cell proliferation
  • hearing
  • cAMP
  • receptor recycling
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 21 (3)
Journal of Neuroscience
Vol. 21, Issue 3
1 Feb 2001
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Brief Treatments with Forskolin Enhance S-Phase Entry in Balance Epithelia from the Ears of Rats
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Brief Treatments with Forskolin Enhance S-Phase Entry in Balance Epithelia from the Ears of Rats
Mireille Montcouquiol, Jeffrey T. Corwin
Journal of Neuroscience 1 February 2001, 21 (3) 974-982; DOI: 10.1523/JNEUROSCI.21-03-00974.2001

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Brief Treatments with Forskolin Enhance S-Phase Entry in Balance Epithelia from the Ears of Rats
Mireille Montcouquiol, Jeffrey T. Corwin
Journal of Neuroscience 1 February 2001, 21 (3) 974-982; DOI: 10.1523/JNEUROSCI.21-03-00974.2001
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • regeneration
  • hair cells
  • cell proliferation
  • hearing
  • cAMP
  • receptor recycling

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Distinct Developmental Modes and Lesion-Induced Reactions of Dendrites of Two Classes of Drosophila Sensory Neurons
  • Functional Hemichannels in Astrocytes: A Novel Mechanism of Glutamate Release
  • Functional Dissociation among Components of Remembering: Control, Perceived Oldness, and Content
Show more ARTICLE

Development/Plasticity/Repair

  • Spatiotemporal Developmental Gradient of Thalamic Morphology, Microstructure, and Connectivity fromthe Third Trimester to Early Infancy
  • Loss of motor cortical inputs to the red nucleus after central nervous system disorders in non-human primates
  • Astrocytes transplanted during early postnatal development integrate, mature, and survive long-term in mouse cortex
Show more Development/Plasticity/Repair
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.