Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
ARTICLE, Behavioral/Systems

Bursting Neurons Signal Input Slope

Adam Kepecs, Xiao-Jing Wang and John Lisman
Journal of Neuroscience 15 October 2002, 22 (20) 9053-9062; DOI: https://doi.org/10.1523/JNEUROSCI.22-20-09053.2002
Adam Kepecs
1Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiao-Jing Wang
1Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Lisman
1Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Brief bursts of high-frequency action potentials represent a common firing mode of pyramidal neurons, and there are indications that they represent a special neural code. It is therefore of interest to determine whether there are particular spatial and temporal features of neuronal inputs that trigger bursts. Recent work on pyramidal cells indicates that bursts can be initiated by a specific spatial arrangement of inputs in which there is coincident proximal and distal dendritic excitation (Larkum et al., 1999). Here we have used a computational model of an important class of bursting neurons to investigate whether there are special temporal features of inputs that trigger bursts. We find that when a model pyramidal neuron receives sinusoidally or randomly varying inputs, bursts occur preferentially on the positive slope of the input signal. We further find that the number of spikes per burst can signal the magnitude of the slope in a graded manner. We show how these computations can be understood in terms of the biophysical mechanism of burst generation. There are several examples in the literature suggesting that bursts indeed occur preferentially on positive slopes (Guido et al., 1992; Gabbiani et al., 1996). Our results suggest that this selectivity could be a simple consequence of the biophysics of burst generation. Our observations also raise the possibility that neurons use a burst duration code useful for rapid information transmission. This possibility could be further examined experimentally by looking for correlations between burst duration and stimulus variables.

  • burst
  • biophysical model
  • pyramidal cell
  • weakly electric fish
  • ELL
  • neural coding
  • simulation
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 22 (20)
Journal of Neuroscience
Vol. 22, Issue 20
15 Oct 2002
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bursting Neurons Signal Input Slope
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Bursting Neurons Signal Input Slope
Adam Kepecs, Xiao-Jing Wang, John Lisman
Journal of Neuroscience 15 October 2002, 22 (20) 9053-9062; DOI: 10.1523/JNEUROSCI.22-20-09053.2002

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Bursting Neurons Signal Input Slope
Adam Kepecs, Xiao-Jing Wang, John Lisman
Journal of Neuroscience 15 October 2002, 22 (20) 9053-9062; DOI: 10.1523/JNEUROSCI.22-20-09053.2002
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Appendix
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • burst
  • biophysical model
  • pyramidal cell
  • weakly electric fish
  • ELL
  • neural coding
  • simulation

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Intracranially Administered Anti-Αβ Antibodies Reduce β-Amyloid Deposition by Mechanisms Both Independent of and Associated with Microglial Activation
  • Calcium Influx via L- and N-Type Calcium Channels Activates a Transient Large-Conductance Ca2+-Activated K+Current in Mouse Neocortical Pyramidal Neurons
  • Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus
Show more ARTICLE

Behavioral/Systems

  • Grouping of Spindle Activity during Slow Oscillations in Human Non-Rapid Eye Movement Sleep
  • Elevated Expression of 5-HT1B Receptors in Nucleus Accumbens Efferents Sensitizes Animals to Cocaine
  • Depression of Fast Excitatory Synaptic Transmission in Large Aspiny Neurons of the Neostriatum after Transient Forebrain Ischemia
Show more Behavioral/Systems
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.