Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
ARTICLE, Behavioral/Systems

Highly Variable Spike Trains Underlie Reproducible Sensorimotor Responses in the Medicinal Leech

Davide Zoccolan, Giulietta Pinato and Vincent Torre
Journal of Neuroscience 15 December 2002, 22 (24) 10790-10800; https://doi.org/10.1523/JNEUROSCI.22-24-10790.2002
Davide Zoccolan
1Scuola Internazionale Superiore di Studi Avanzati and Istituto Nazionale di Fisica della Materia, 34014 Trieste, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Giulietta Pinato
1Scuola Internazionale Superiore di Studi Avanzati and Istituto Nazionale di Fisica della Materia, 34014 Trieste, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vincent Torre
1Scuola Internazionale Superiore di Studi Avanzati and Istituto Nazionale di Fisica della Materia, 34014 Trieste, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The nervous system of the leech is a particularly suitable model to investigate neural coding of sensorimotor responses because it allows both observation of behavior and the simultaneous measurement of a large fraction of its underlying neuronal activity. In this study, we used a combination of multielectrode recordings, videomicroscopy, and computation of the optical flow to investigate the reproducibility of the motor response caused by local mechanical stimulation of the leech skin. We analyzed variability at different levels of processing: mechanosensory neurons, motoneurons, muscle activation, and behavior. Spike trains in mechanosensory neurons were very reproducible, unlike those in motoneurons. The motor response, however, was reproducible because of two distinct biophysical mechanisms. First, leech muscles contract slowly and therefore are poorly sensitive to the jitter of motoneuron spikes. Second, the motor response results from the coactivation of a population of motoneurons firing in a statistically independent way, which reduces the variability of the population firing. These data show that reproducible spike trains are not required to sustain reproducible behaviors and illustrate how the nervous system can cope with unreliable components to produce reliable action.

  • sensorimotor responses
  • optical flow
  • statistical independence
  • pooling variability
  • population coding
  • reproducibility of muscle contraction
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 22 (24)
Journal of Neuroscience
Vol. 22, Issue 24
15 Dec 2002
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Highly Variable Spike Trains Underlie Reproducible Sensorimotor Responses in the Medicinal Leech
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Highly Variable Spike Trains Underlie Reproducible Sensorimotor Responses in the Medicinal Leech
Davide Zoccolan, Giulietta Pinato, Vincent Torre
Journal of Neuroscience 15 December 2002, 22 (24) 10790-10800; DOI: 10.1523/JNEUROSCI.22-24-10790.2002

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Highly Variable Spike Trains Underlie Reproducible Sensorimotor Responses in the Medicinal Leech
Davide Zoccolan, Giulietta Pinato, Vincent Torre
Journal of Neuroscience 15 December 2002, 22 (24) 10790-10800; DOI: 10.1523/JNEUROSCI.22-24-10790.2002
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • sensorimotor responses
  • optical flow
  • statistical independence
  • pooling variability
  • population coding
  • reproducibility of muscle contraction

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Electrophysiological Imaging of Functional Architecture in the Cortical Middle Temporal Visual Area of Cebus apella Monkey
  • The Basement Membrane Components Nidogen and Type XVIII Collagen Regulate Organization of Neuromuscular Junctions inCaenorhabditis elegans
  • The Role of the Hyperpolarization-Activated Cationic CurrentIh in the Timing of Interictal Bursts in the Neonatal Hippocampus
Show more ARTICLE

Behavioral/Systems

  • Grouping of Spindle Activity during Slow Oscillations in Human Non-Rapid Eye Movement Sleep
  • Elevated Expression of 5-HT1B Receptors in Nucleus Accumbens Efferents Sensitizes Animals to Cocaine
  • Depression of Fast Excitatory Synaptic Transmission in Large Aspiny Neurons of the Neostriatum after Transient Forebrain Ischemia
Show more Behavioral/Systems
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.