Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
ARTICLE, Cellular/Molecular

Consequences of the Stoichiometry of Slo1 α and Auxiliary β Subunits on Functional Properties of Large-Conductance Ca2+-Activated K+Channels

Ying-Wei Wang, Jiu Ping Ding, Xiao-Ming Xia and Christopher J. Lingle
Journal of Neuroscience 1 March 2002, 22 (5) 1550-1561; DOI: https://doi.org/10.1523/JNEUROSCI.22-05-01550.2002
Ying-Wei Wang
1Departments of Anesthesiology and Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jiu Ping Ding
1Departments of Anesthesiology and Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiao-Ming Xia
1Departments of Anesthesiology and Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher J. Lingle
1Departments of Anesthesiology and Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Auxiliary β subunits play a major role in defining the functional properties of large-conductance, Ca2+-dependent BK-type K+ channels. In particular, both the β1 and β2 subunits produce strong shifts in the voltage dependence of channel activation at a given Ca2+. β subunits are thought to coassemble with α subunits in a 1:1 stoichiometry, such that a full ion channel complex may contain up to four β subunits per channel. However, previous results raise the possibility that ion channels with less than a full complement of β subunits may also occur. The functional consequence of channels with differing stoichiometries remains unknown. Here, using expression of α and β subunits in Xenopus oocytes, we show explicitly that functional BK channels can arise with less than four β subunits. Furthermore, the results show that, for both the β1 and β2 subunits, each individual β subunit produces an essentially identical, incremental effect on the voltage dependence of gating. For channels arising from α + β2 subunits, the number of β2 subunits per channel also has a substantial impact on properties of steady-state inactivation and recovery from inactivation. Thus, the stoichiometry of α:β subunit assembly can play a major functional role in defining the apparent Ca2+ dependence of activation of BK channels and in influencing the availability of BK channels for activation.

  • auxiliary subunits
  • BK channels
  • Ca2+- and voltage-gated K+ channels
  • Slo1channels
  • inactivation
  • ion channel stoichiometry
  • gating mechanisms
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 22 (5)
Journal of Neuroscience
Vol. 22, Issue 5
1 Mar 2002
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Consequences of the Stoichiometry of Slo1 α and Auxiliary β Subunits on Functional Properties of Large-Conductance Ca2+-Activated K+Channels
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Consequences of the Stoichiometry of Slo1 α and Auxiliary β Subunits on Functional Properties of Large-Conductance Ca2+-Activated K+Channels
Ying-Wei Wang, Jiu Ping Ding, Xiao-Ming Xia, Christopher J. Lingle
Journal of Neuroscience 1 March 2002, 22 (5) 1550-1561; DOI: 10.1523/JNEUROSCI.22-05-01550.2002

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Consequences of the Stoichiometry of Slo1 α and Auxiliary β Subunits on Functional Properties of Large-Conductance Ca2+-Activated K+Channels
Ying-Wei Wang, Jiu Ping Ding, Xiao-Ming Xia, Christopher J. Lingle
Journal of Neuroscience 1 March 2002, 22 (5) 1550-1561; DOI: 10.1523/JNEUROSCI.22-05-01550.2002
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • auxiliary subunits
  • BK channels
  • Ca2+- and voltage-gated K+ channels
  • Slo1channels
  • inactivation
  • ion channel stoichiometry
  • gating mechanisms

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus
  • Sp1 and Sp3 Are Oxidative Stress-Inducible, Antideath Transcription Factors in Cortical Neurons
  • Distinct Developmental Modes and Lesion-Induced Reactions of Dendrites of Two Classes of Drosophila Sensory Neurons
Show more ARTICLE

Cellular/Molecular

  • The GARP Domain of the Rod CNG Channel’s β1-subunit Contains Distinct Sites for Outer Segment Targeting and Connecting to the Photoreceptor Disc Rim
  • The phosphoprotein Synapsin Ia regulates the kinetics of dense-core vesicle release
  • Tuba Activates Cdc42 during Neuronal Polarization Downstream of the Small GTPase Rab8a
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.