Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
ARTICLE, Behavioral/Systems

Lower Sensitivity to Stress and Altered Monoaminergic Neuronal Function in Mice Lacking the NMDA Receptor ε4 Subunit

Yoshiaki Miyamoto, Kiyofumi Yamada, Yukihiro Noda, Hisashi Mori, Masayoshi Mishina and Toshitaka Nabeshima
Journal of Neuroscience 15 March 2002, 22 (6) 2335-2342; https://doi.org/10.1523/JNEUROSCI.22-06-02335.2002
Yoshiaki Miyamoto
1Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8560, Japan, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kiyofumi Yamada
1Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8560, Japan, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yukihiro Noda
1Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8560, Japan, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hisashi Mori
2Department of Molecular Neurobiology and Pharmacology, School of Medicine, University of Tokyo, Bunkyou-Ku, Tokyo 113-0033, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masayoshi Mishina
2Department of Molecular Neurobiology and Pharmacology, School of Medicine, University of Tokyo, Bunkyou-Ku, Tokyo 113-0033, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Toshitaka Nabeshima
1Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8560, Japan, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

NMDA receptors, an ionotropic subtype of glutamate receptors (GluRs), play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. They are composed of the GluRζ subunit (NR1) combined with any one of four GluRε subunits (GluRε1–GluRε4; NR2A–NR2D). Although the GluRζ subunit exists in the majority of the CNS throughout all stages of development, the GluRε subunits are expressed in distinct temporal and spatial patterns. In the present study, we investigated neuronal functions in mice lacking the embryonic GluRε4 subunit. GluRε4 mutant mice exhibited reductions of [3H]MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate] binding and45Ca2+ uptake through the NMDA receptors. The expression of GluRζ subunit protein, but not GluRε1 and GluRε2 subunit proteins, was reduced in the frontal cortex and striatum of the mutant mice. A postmortem examination in GluRε4 mutant mice revealed that tissue contents of norepinephrine, dopamine, serotonin, and their metabolites were reduced in the hippocampus and that dopamine, as well as serotonin, metabolism was upregulated in the frontal cortex, striatum, hippocampus, and thalamus. To clarify the phenotypical influences of the alteration in neuronal functions, performances in various behavioral tests were examined. GluRε4 mutant mice showed reduced spontaneous locomotor activity in a novel environment and less sensitivity to stress induced by the elevated plus-maze, light–dark box, and forced swimming tests. These findings suggest that GluRε4 mutant mice have dysfunctional NMDA receptors and altered emotional behavior probably caused by changes in monoaminergic neuronal activities in adulthood.

  • NMDA receptor
  • GluRε4 subunit
  • GluRζ subunit
  • monoaminergic neuronal systems
  • locomotor activity
  • emotional behavior
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 22 (6)
Journal of Neuroscience
Vol. 22, Issue 6
15 Mar 2002
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Lower Sensitivity to Stress and Altered Monoaminergic Neuronal Function in Mice Lacking the NMDA Receptor ε4 Subunit
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Lower Sensitivity to Stress and Altered Monoaminergic Neuronal Function in Mice Lacking the NMDA Receptor ε4 Subunit
Yoshiaki Miyamoto, Kiyofumi Yamada, Yukihiro Noda, Hisashi Mori, Masayoshi Mishina, Toshitaka Nabeshima
Journal of Neuroscience 15 March 2002, 22 (6) 2335-2342; DOI: 10.1523/JNEUROSCI.22-06-02335.2002

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Lower Sensitivity to Stress and Altered Monoaminergic Neuronal Function in Mice Lacking the NMDA Receptor ε4 Subunit
Yoshiaki Miyamoto, Kiyofumi Yamada, Yukihiro Noda, Hisashi Mori, Masayoshi Mishina, Toshitaka Nabeshima
Journal of Neuroscience 15 March 2002, 22 (6) 2335-2342; DOI: 10.1523/JNEUROSCI.22-06-02335.2002
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • NMDA receptor
  • GluRε4 subunit
  • GluRζ subunit
  • monoaminergic neuronal systems
  • locomotor activity
  • emotional behavior

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

ARTICLE

  • Functional Hemichannels in Astrocytes: A Novel Mechanism of Glutamate Release
  • Evidence for Long-Lasting Cholinergic Control of Gap Junctional Communication between Adrenal Chromaffin Cells
  • Menstrual Cycle-Dependent Neural Plasticity in the Adult Human Brain Is Hormone, Task, and Region Specific
Show more ARTICLE

Behavioral/Systems

  • The Role of Rat Medial Frontal Cortex in Effort-Based Decision Making
  • Isolation of Relevant Visual Features from Random Stimuli for Cortical Complex Cells
  • Genetic Dissociation of Opiate Tolerance and Physical Dependence in δ-Opioid Receptor-1 and Preproenkephalin Knock-Out Mice
Show more Behavioral/Systems
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.