Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
THIS WEEK IN THE JOURNAL

This Week in the Journal

Journal of Neuroscience 22 October 2003, 23 (29)
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Embedded ImageCellular/Molecular

A Pairing of Transcription Factors

Cross-Repressive Interaction of the Olig2 and Nkx2.2 Transcription Factors in Developing Neural Tube Associated with Formation of a Specific Physical Complex

Tao Sun, Hualing Dong, Lizi Wu, Michael Kane, David H. Rowitch, and Charles D. Stiles

(see pages 9547-9556)

It is a daunting task to sort out the spatiotemporal expression patterns of transcription factors that encode neuronal development. Sun et al. approached this problem for members of two distinct classes of transcription factors, Olig2, a basic helix-loop-helix (bHLH) factor, and Nkx2.2, a homeodomain (HD) factor. Genetic analysis already suggests that these two interact in a cross-repressive manner to delineate the border of the p3 and pMN progenitor domains in the ventral neural tube. Later, they cooperate to promote oligodendrocyte maturation. The authors used two-hybrid and pull-down assays to demonstrate that the two proteins form a complex that requires their bHLH and HD domains. In addition, coexpresssion of the two factors in Cos7 cells allowed translocation of Olig2 from the cytoplasm to the nucleus. Experiments with deletion mutants suggest that the physical interaction, whether direct or indirect, is not sufficient to promote oligodendrocyte differentiation, but appears necessary and sufficient for cross-repression. These results provide further evidence that interactions between these two classes of transcription factors may be a general developmental mechanism.

Embedded ImageDevelopment/Plasticity/Repair

Sleepless in the Hippocampus

Sleep Deprivation Causes Behavioral, Synaptic, and Membrane Excitability Alterations in Hippocampal Neurons

Carmel M. McDermott, Gerald J. LaHoste, Chu Chen, Alberto Musto, Nicolas G. Bazan, and Jeffrey C. Magee

(see pages 9687-9695)

The function of sleep remains a mystery, but some speculate that snooze time is necessary to consolidate memories, with neuronal plasticity as the underlying mechanism. A study by McDermott et al. indicates that sleep history in fact affects cellular excitability. Rats were sleep-deprived (SD) for 72 hr in a water bath containing small platforms where they could rest, but not lie down, sort of like a coach seat on a transatlantic flight. This procedure reduced rapid eye movement (REM) sleep. Subsequently, to test memory, a tone (cue) was presented followed by a shock. The next day, SD rats “froze” in the chamber less than control rats, thus indicating a deficit in contextual, hippocampal-dependent memory. There was no difference in a cued memory task; thus amygdala-dependent memory remained intact. In SD animals, the hippocampal CA1 neurons had decreased cell input resistance and enhanced spike frequency adaptation. Excitability of granule cells of the dentate gyrus was unchanged, although long-term potentiation production was reduced in the dentate gyrus and CA1. The authors argue that their results are not a result of immobilization stress but rather a direct consequence of sleep deprivation. The underlying receptors or channels involved in the reduced excitability remain to be determined.

Embedded ImageBehavioral/Systems/Cognitive

Receptive Field Plasticity in Cerebellar Interneurons

Receptive Field Plasticity Profoundly Alters the Cutaneous Parallel Fiber Synaptic Input to Cerebellar Interneurons In Vivo

Henrik Jörntell and Carl-Fredrik Ekerot

(see pages 9620-9631)

Although perhaps not immediately obvious to nonexperts, cerebellum interneurons have distinct cutaneous receptive fields. Inhibitory interneurons (INs) of the molecular layer each receive excitatory input from hundreds of parallel fibers (PFs) and from a single climbing fiber (CF) that determines the receptive field of the interneuron. Thus, only a select few PFs (those with a small receptive field matching that of the adjacent CF) are normally active at IN synapses. The remaining PFs are silent but can be reversibly recruited by coactivation of CFs. Such conjunctive PF-CF stimulation results in a massive expansion of the receptive field of the IN to include the entire forearm in cats. This week, Jörntell and Ekerot examine the underlying synaptic activity in vivo using whole-cell patch-clamp recording from interneurons in response to electrical and natural cutaneous stimulation. Their results confirm a long-lasting potentiation of parallel fiber input to interneurons after conjunctive PF and CF activation.

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Manual stimulation of the forelimb at three sites (1-3) maps a receptive field of a cerebellar interneuron. Darker shading indicates more synaptic activity. In the bottom panel, note the marked expansion of the receptive field after conjunctive PF-CF stimulation.

Back to top

In this issue

The Journal of Neuroscience: 23 (29)
Journal of Neuroscience
Vol. 23, Issue 29
22 Oct 2003
  • Table of Contents
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
This Week in the Journal
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
This Week in the Journal
Journal of Neuroscience 22 October 2003, 23 (29)

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
This Week in the Journal
Journal of Neuroscience 22 October 2003, 23 (29)
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Cellular/Molecular
    • Development/Plasticity/Repair
    • Behavioral/Systems/Cognitive
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • This Week in The Journal
  • This Week in The Journal
  • This Week in The Journal
Show more This Week in The Journal
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.