Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Neurobiology of Disease

Temporally Specific Burst in Cell Proliferation Increases Hippocampal Neurogenesis in Protracted Abstinence from Alcohol

Kimberly Nixon and Fulton T. Crews
Journal of Neuroscience 27 October 2004, 24 (43) 9714-9722; DOI: https://doi.org/10.1523/JNEUROSCI.3063-04.2004
Kimberly Nixon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fulton T. Crews
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Adult neurogenesis is a newly considered form of plasticity that could contribute to brain dysfunction in psychiatric disease. Chronic alcoholism, a disease affecting over 8% of the adult population, produces cognitive impairments and decreased brain volumes, both of which are partially reversed during abstinence. Clinical data and animal models implicate the hippocampus, a region important in learning and memory. In a model of alcohol dependence (chronic binge exposure for 4 d), we show that adult neurogenesis is inhibited during dependence with a pronounced increase in new hippocampal neuron formation after weeks of abstinence. This increase is attributable to a temporally and regionally specific fourfold increase in cell proliferation at day 7 of abstinence, with a majority of those cells surviving and differentiating at percentages similar to controls, effects that doubled the formation of new neurons. Although increases in cell proliferation correlated with alcohol withdrawal severity, proliferation remained increased when diazepam (10 mg/kg) was used to reduce withdrawal severity. Indeed, those animals with little withdrawal activity still show a twofold burst in cell proliferation at day 7 of abstinence. Thus, alcohol dependence and recovery from dependence continues to alter hippocampal plasticity during abstinence. Because neurogenesis may contribute to hippocampal function and/or learning, memory, and mood, compensatory neurogenesis and the return of normal neurogenesis may also have an impact on hippocampal structure and function. For the first time, these data provide a neurobiological mechanism that may underlie the return of human cognitive function and brain volume associated with recovery from addiction.

  • ethanol
  • dentate gyrus
  • adult neurogenesis
  • progenitor
  • addiction
  • neurotoxicity
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 24 (43)
Journal of Neuroscience
Vol. 24, Issue 43
27 Oct 2004
  • Table of Contents
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Temporally Specific Burst in Cell Proliferation Increases Hippocampal Neurogenesis in Protracted Abstinence from Alcohol
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Temporally Specific Burst in Cell Proliferation Increases Hippocampal Neurogenesis in Protracted Abstinence from Alcohol
Kimberly Nixon, Fulton T. Crews
Journal of Neuroscience 27 October 2004, 24 (43) 9714-9722; DOI: 10.1523/JNEUROSCI.3063-04.2004

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Temporally Specific Burst in Cell Proliferation Increases Hippocampal Neurogenesis in Protracted Abstinence from Alcohol
Kimberly Nixon, Fulton T. Crews
Journal of Neuroscience 27 October 2004, 24 (43) 9714-9722; DOI: 10.1523/JNEUROSCI.3063-04.2004
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Disruption of Endosomal Sorting in Schwann Cells Leads to Defective Myelination and Endosomal Abnormalities Observed in Charcot-Marie-Tooth Disease
  • A Computational Probe into the Behavioral and Neural Markers of Atypical Facial Emotion Processing in Autism
  • Calpain-2 Mediates MBNL2 Degradation and a Developmental RNA Processing Program in Neurodegeneration
Show more Neurobiology of Disease
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.