Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext

Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons.

H Shimazu, M A Maier, G Cerri, P A Kirkwood and R N Lemon
Journal of Neuroscience 4 February 2004, 24 (5) 1200-1211; DOI: https://doi.org/10.1523/JNEUROSCI.4731-03.2004
H Shimazu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M A Maier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Cerri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P A Kirkwood
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R N Lemon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The ventral premotor area (F5) is part of the cortical circuit controlling visuomotor grasp. F5 could influence hand motor function through at least two pathways: corticospinal projections and corticocortical projections to primary motor cortex (M1). We found that stimulation of macaque F5, which by itself evoked little or no detectable corticospinal output, could produce a robust modulation of motor outputs from M1. Arrays of fine microwires were implanted in F5 and M1. During terminal experiments under chloralose anesthesia, single stimuli delivered to M1 electrodes evoked direct (D) and indirect (I1,I2, and I3) corticospinal volleys. In contrast, single F5 shocks were ineffective; double shocks (3 msec separation) evoked small I waves but no D wave. However, when the test (T) M1 shock was conditioned (C) by single or double F5 shocks, there was strong facilitation of I2 and I3 waves from M1, with C-T intervals of <1 msec. Intracellular recordings from 79 arm and hand motoneurons (MNs) revealed no postsynaptic effects from single F5 shocks. In contrast, these stimuli produced a robust facilitation of I2 and I3 EPSPs evoked from M1 (60% of MNs); this was particularly marked in hand muscle MNs (92%). Muscimol injection in M1 reduced I waves from F5 and abolished the F5-induced facilitation of late I waves from M1, and of EPSPs associated with them. Thus, some motor effects evoked from F5 may be mediated by corticocortical inputs to M1 impinging on interneurons generating late corticospinal I waves. Similar mechanisms may allow F5 to modulate grasp-related outputs from M1.

Back to top

In this issue

The Journal of Neuroscience: 24 (5)
Journal of Neuroscience
Vol. 24, Issue 5
4 Feb 2004
  • Table of Contents
  • About the Cover
  • Index by author
  • abstractBrowser.pdf
  • 2004 revieweracknowledgements.pdf
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons.
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons.
H Shimazu, M A Maier, G Cerri, P A Kirkwood, R N Lemon
Journal of Neuroscience 4 February 2004, 24 (5) 1200-1211; DOI: 10.1523/JNEUROSCI.4731-03.2004

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons.
H Shimazu, M A Maier, G Cerri, P A Kirkwood, R N Lemon
Journal of Neuroscience 4 February 2004, 24 (5) 1200-1211; DOI: 10.1523/JNEUROSCI.4731-03.2004
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.