Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Behavioral/Systems/Cognitive

Vocal Pathways Modulate Efferent Neurons to the Inner Ear and Lateral Line

Matthew S. Weeg, Bruce R. Land and Andrew H. Bass
Journal of Neuroscience 22 June 2005, 25 (25) 5967-5974; DOI: https://doi.org/10.1523/JNEUROSCI.0019-05.2005
Matthew S. Weeg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bruce R. Land
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew H. Bass
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

All sonic vertebrates face the problem of sound production interfering with their ability to detect and process external acoustic signals, including conspecific vocalizations. Direct efferent inputs to the inner ear of all vertebrates, and the lateral line system of some aquatic vertebrates, represent a potential mechanism to adjust peripheral sensitivity during sound production. We recorded from single efferent neurons that innervate the inner ear and lateral line in a sound-producing teleost fish while evoking fictive vocalizations predictive of the temporal features of natural vocalizations. The majority of efferent neurons showed an increase in activity that occurred in-phase with modulations in the fine temporal structure of the fictive vocalizations. Many of these neurons also showed a decrease in activity at fictive vocal offset. Efferents to the sacculus, the main auditory end organ, showed features especially well adapted for maintaining sensitivity to external acoustic signals during sound production. These included robust phase locking of efferent activity to each cycle of a fictive vocalization and a long-duration rebound suppression after each fictive vocalization that could provide a rapid, long-lasting period of sensitization to external acoustic stimuli such as the call of a conspecific. These results suggest that efferent activation by the vocal motor system can directly modulate auditory sensitivity to self-generated sounds and maintain sensitivity to ongoing external sounds. Given the conserved organization of the auditory efferent system across vertebrates, such mechanisms may be operative among all sonic vertebrates.

  • vocalization
  • audition
  • lateral line
  • temporal modulation
  • teleost
  • hearing
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 25 (25)
Journal of Neuroscience
Vol. 25, Issue 25
22 Jun 2005
  • Table of Contents
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Vocal Pathways Modulate Efferent Neurons to the Inner Ear and Lateral Line
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Vocal Pathways Modulate Efferent Neurons to the Inner Ear and Lateral Line
Matthew S. Weeg, Bruce R. Land, Andrew H. Bass
Journal of Neuroscience 22 June 2005, 25 (25) 5967-5974; DOI: 10.1523/JNEUROSCI.0019-05.2005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Vocal Pathways Modulate Efferent Neurons to the Inner Ear and Lateral Line
Matthew S. Weeg, Bruce R. Land, Andrew H. Bass
Journal of Neuroscience 22 June 2005, 25 (25) 5967-5974; DOI: 10.1523/JNEUROSCI.0019-05.2005
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Influence of Reward on Corticospinal Excitability during Movement Preparation
  • Identification and Characterization of a Sleep-Active Cell Group in the Rostral Medullary Brainstem
  • Gravin Orchestrates Protein Kinase A and β2-Adrenergic Receptor Signaling Critical for Synaptic Plasticity and Memory
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.