Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Behavioral/Systems/Cognitive

Off-Line Learning and the Primary Motor Cortex

Edwin M. Robertson, Daniel Z. Press and Alvaro Pascual-Leone
Journal of Neuroscience 6 July 2005, 25 (27) 6372-6378; DOI: https://doi.org/10.1523/JNEUROSCI.1851-05.2005
Edwin M. Robertson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel Z. Press
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alvaro Pascual-Leone
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We are all familiar with acquiring skills during practice, but skill can also continue to develop between practice sessions. These “off-line” improvements are frequently supported by sleep, but they can be time dependent when a skill is acquired unintentionally. The magnitude of these over-day and overnight improvements is similar, suggesting that a similar mechanism may support both types of off-line improvements. However, here we show that disruption of the primary motor cortex with repetitive transcranial magnetic stimulation blocks off-line improvements over the day but not overnight. This suggests that a memory may be rescued overnight and subsequently enhanced or that different aspects of a skill, with differential dependencies on the primary motor cortex, are enhanced over day and overnight. Off-line improvements of similar magnitude are not supported by similar mechanisms; instead, the mechanisms engaged may depend on brain state.

  • motor cortex
  • sensorimotor
  • motor learning
  • motor control
  • learning and memory
  • repetitive transcranial magnetic stimulation
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 25 (27)
Journal of Neuroscience
Vol. 25, Issue 27
6 Jul 2005
  • Table of Contents
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Off-Line Learning and the Primary Motor Cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Off-Line Learning and the Primary Motor Cortex
Edwin M. Robertson, Daniel Z. Press, Alvaro Pascual-Leone
Journal of Neuroscience 6 July 2005, 25 (27) 6372-6378; DOI: 10.1523/JNEUROSCI.1851-05.2005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Off-Line Learning and the Primary Motor Cortex
Edwin M. Robertson, Daniel Z. Press, Alvaro Pascual-Leone
Journal of Neuroscience 6 July 2005, 25 (27) 6372-6378; DOI: 10.1523/JNEUROSCI.1851-05.2005
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Influence of Reward on Corticospinal Excitability during Movement Preparation
  • Identification and Characterization of a Sleep-Active Cell Group in the Rostral Medullary Brainstem
  • Gravin Orchestrates Protein Kinase A and β2-Adrenergic Receptor Signaling Critical for Synaptic Plasticity and Memory
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.