Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Featured ArticleDevelopment/Plasticity/Repair

Disruption and Recovery of Patterned Retinal Activity in the Absence of Acetylcholine

Rebecca C. Stacy, Jay Demas, Robert W. Burgess, Joshua R. Sanes and Rachel O. L. Wong
Journal of Neuroscience 12 October 2005, 25 (41) 9347-9357; https://doi.org/10.1523/JNEUROSCI.1800-05.2005
Rebecca C. Stacy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jay Demas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert W. Burgess
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joshua R. Sanes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rachel O. L. Wong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Many developing neural circuits generate synchronized bursting activity among neighboring neurons, a pattern thought to be important for sculpting precise neural connectivity. Network output remains relatively constant as the cellular and synaptic components of these immature circuits change during development, suggesting the presence of homeostatic mechanisms. In the retina, spontaneous waves of activity are present even before chemical synapse formation, needing gap junctions to propagate. However, as synaptogenesis proceeds, retinal waves become dependent on cholinergic neurotransmission, no longer requiring gap junctions. Later still in development, waves are driven by glutamatergic rather than cholinergic synapses. Here, we asked how retinal activity evolves in the absence of cholinergic transmission by using a conditional mutant in which the gene encoding choline acetyltransferase (ChAT), the sole synthetic enzyme for acetylcholine (ACh), was deleted from large retinal regions. ChAT-negative regions lacked retinal waves for the first few days after birth, but by postnatal day 5 (P5), ACh-independent waves propagated across these regions. Pharmacological analysis of the waves in ChAT knock-out regions revealed a requirement for gap junctions but not glutamate, suggesting that patterned activity may have emerged via restoration of previous gap-junctional networks. Similarly, in P5 wild-type retinas, spontaneous activity recovered after a few hours in nicotinic receptor antagonists, often as local patches of coactive cells but not waves. The rapid recovery of rhythmic spontaneous activity in the presence of cholinergic antagonists and the eventual emergence of waves in ChAT knock-out regions suggest that homeostatic mechanisms regulate retinal output during development.

  • retina
  • wave
  • homeostasis
  • acetylcholine
  • gap junction
  • development
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 25 (41)
Journal of Neuroscience
Vol. 25, Issue 41
12 Oct 2005
  • Table of Contents
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Disruption and Recovery of Patterned Retinal Activity in the Absence of Acetylcholine
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Disruption and Recovery of Patterned Retinal Activity in the Absence of Acetylcholine
Rebecca C. Stacy, Jay Demas, Robert W. Burgess, Joshua R. Sanes, Rachel O. L. Wong
Journal of Neuroscience 12 October 2005, 25 (41) 9347-9357; DOI: 10.1523/JNEUROSCI.1800-05.2005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Disruption and Recovery of Patterned Retinal Activity in the Absence of Acetylcholine
Rebecca C. Stacy, Jay Demas, Robert W. Burgess, Joshua R. Sanes, Rachel O. L. Wong
Journal of Neuroscience 12 October 2005, 25 (41) 9347-9357; DOI: 10.1523/JNEUROSCI.1800-05.2005
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Change of spiny neuron structure in the basal ganglia song circuit and its regulation by miR-9 during song development
  • Stereotyped Spatiotemporal Dynamics of Spontaneous Activity in Visual Cortex Prior to Eye Opening
  • The epigenetic reader PHF23 is required for embryonic neurogenesis
Show more Development/Plasticity/Repair
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.