Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
This Week in The Journal

This Week in The Journal

Journal of Neuroscience 22 March 2006, 26 (12) i
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Embedded ImageCellular/Molecular

Notch1 Signaling and Radial Glia

Brooke A. Patten, S. Pablo Sardi, Samir Koirala, Masato Nakafuku, and Gabriel Corfas

(see pages 3102–3108)

Migrating neurons move along tracks laid by radial glia. In the cerebellum, radial (Bergmann) glia arise from cerebellar astroglia, a process triggered by glial–neuronal contact. This glial differentiation involves activation of Notch1 and binding of its intracellular domain to Suppressor of Hairless [Su(H)] and Deltex1 (DTX1). These canonical and noncanonical pathways lead to expression of brain lipid binding protein (BLBP) and the receptor tyrosine kinase erbB2, respectively. BLBP affects cell–cell adhesion, whereas glial erbB2 interacts with neuregulin I expressed by migrating granule cells. This week, Patten et al. report that overexpression of DTX1 or a dominant-negative form disrupted Su(H)-mediated signaling, but expression of Su(H) had no effect on DTX1-induced events. In contrast, RNAi-mediated knock-down of DTX1 selectively blocked the effects of DTX1, leaving Su(H) signaling intact. The authors propose a hierarchical relationship between the two pathways, in which radial glia differentiation depends on the relative expression of the two molecules.

Embedded ImageDevelopment/Plasticity/Repair

Motoneuron Differentiation from ES Cells

Prabakaran Soundararajan, Gareth B. Miles, Lee L. Rubin, Robert M. Brownstone, and Victor F. Rafuse

(see pages 3256–3268)

This week, Soundararajan et al. provide additional evidence that embryonic stem (ES) cells can be directed to generate defined classes of motoneurons, an important general issue for successful cell transplantation. The authors treated ES cells with sonic hedgehog (Shh) ligand and retinoic acid (RA) for 5 d in culture and tracked the cells with enhanced green fluorescent protein (eGFP) under control of the Hb9 promoter. Most of the Hb9-expressing motoneurons also expressed Lhx3 in vitro, a homeobox gene that distinguishes motoneurons in the medial aspect of the medial motor column (MMCm). Indicative of their class specificity, cells transplanted into the neural tube lumen of chick embryos were later found in the MMCm and either selectively projected axons with the dorsal ramus to epaxial muscle targets or, interestingly, misprojected axons to skin targets. Whole-cell recordings showed that cells transplanted in ovo had electrical and synaptic properties comparable with endogenous MMCm cells. ⇓

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

The vast majority of eGFP+ ES cells, as well as a few eGFP− cells (arrowhead), expressed the transcription factor Lhx3 after treatment with retinoic acid and sonic hedgehog ligand. See the article by Soundararajan et al. for details.

Embedded ImageBehavioral/Systems/Cognitive

Releasing Dopamine with Cocaine

B. Jill Venton, Andrew T. Seipel, Paul E. M. Phillips, William C. Wetsel, Daniel Gitler, Paul Greengard, George J. Augustine, and R. Mark Wightman

(see pages 3206–3209)

Cocaine works by competitively inhibiting the dopamine transporter, thus slowing uptake of dopamine (DA) and increasing extracellular DA. But this week, Venton et al. provide evidence for a second, long-postulated mode of action for this psychostimulant: release of a reserve pool of DA vesicles. The authors delivered long electrical stimuli to the mouse medial forebrain bundle and measured DA by cyclic voltammetry in the striatum. Cocaine increased DA release by approximately one-half. However, when the readily releasable DA pool was depleted, cocaine still increased DA release, suggesting that cocaine also affects the reserve pool of vesicles. Because synapsins bind to vesicles and segregate them into reserve pools, the authors tested cocaine in a knock-out mouse deficient in all three synapsins. In these mice, cocaine elicited a much smaller increase in DA release. How cocaine triggers this DA release from vesicles sequestered by synapsin remains a question.

Embedded ImageNeurobiology of Disease

Oligodendrocyte Cell Therapy in MLD Mice

Maria I. Givogri, Francesca Galbiati, Stefania Fasano, Stefano Amadio, Laura Perani, Daniela Superchi, Pablo Morana, Ubaldo Del Carro, Sergio Marchesini, Riccardo Brambilla, Lawrence Wrabetz, and Ernesto Bongarzone

(see pages 3109–3119)

Metachromatic leukodystrophy (MLD) results from deficiency of the lysosomal enzyme arylsulfatase A (ARSA). The clinical course includes progressive neurodegeneration caused by accumulation of sulfatides, oligodendrocyte dysfunction, and myelin loss. Hematogenous stem cell transplantation in patients and gene therapy in ARSA−/− mice have been tried, but this week, Givogri et al. test a more universal approach. They transplanted migratory oligodendrocyte progenitor cells (OLPs) into young ARSA−/− mice. In culture, OLPs differentiated into mature cells with elaborate processes and expressed oligodendrocyte (OL) markers. The authors grafted ARSA-expressing OLP cells into newborn MLD and wild-type pups. In MLD brains, the cells spread throughout the brain within a few days, survived and proliferated, whereas wild-type or older MLD mice were less receptive to the cells. In vivo, the grafted cells differentiated into OLs and became myelinating. Most importantly, transplantation reduced sulfatide deposits by 20–50% and normalized several measures of nerve function and behavior.

Back to top

In this issue

The Journal of Neuroscience: 26 (12)
Journal of Neuroscience
Vol. 26, Issue 12
22 Mar 2006
  • Table of Contents
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
This Week in The Journal
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
This Week in The Journal
Journal of Neuroscience 22 March 2006, 26 (12) i

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
This Week in The Journal
Journal of Neuroscience 22 March 2006, 26 (12) i
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Cellular/Molecular
    • Development/Plasticity/Repair
    • Behavioral/Systems/Cognitive
    • Neurobiology of Disease
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • This Week in The Journal
  • This Week in The Journal
  • This Week in The Journal
Show more This Week in The Journal
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.