Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Why Does the Brain Predict Sensory Consequences of Oculomotor Commands? Optimal Integration of the Predicted and the Actual Sensory Feedback

Siavash Vaziri, Jörn Diedrichsen and Reza Shadmehr
Journal of Neuroscience 19 April 2006, 26 (16) 4188-4197; DOI: https://doi.org/10.1523/JNEUROSCI.4747-05.2006
Siavash Vaziri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jörn Diedrichsen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Reza Shadmehr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

When the brain initiates a saccade, it uses a copy of the oculomotor commands to predict the visual consequences: for example, if one fixates a reach target, a peripheral saccade will produce an internal estimate of the new retinal location of the target, a process called remapping. In natural settings, the target likely remains visible after the saccade. So why should the brain predict the sensory consequence of the saccade when after its completion, the image of the target remains visible? We hypothesized that in the post-saccadic period, the brain integrates target position information from two sources: one based on remapping and another based on the peripheral view of the target. The integration of information from these two sources could produce a less variable target estimate than is possible from either source alone. Here, we show that reaching toward targets that were initially foveated and remapped had significantly less variance than reaches relying on peripheral target information. Furthermore, in a more natural setting where both sources of information were available simultaneously, variance of the reaches was further reduced as predicted by integration. This integration occurred in a statistically optimal manner, as demonstrated by the change in integration weights when we manipulated the uncertainty of the post-saccadic target estimate by varying exposure time. Therefore, the brain predicts the sensory consequences of motor commands because it integrates its prediction with the actual sensory information to produce an estimate of sensory space that is better than possible from either source alone.

  • forward models
  • efferent copy
  • optimal integration
  • reaching
  • Bayesian models
  • motor control
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 26 (16)
Journal of Neuroscience
Vol. 26, Issue 16
19 Apr 2006
  • Table of Contents
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Why Does the Brain Predict Sensory Consequences of Oculomotor Commands? Optimal Integration of the Predicted and the Actual Sensory Feedback
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Why Does the Brain Predict Sensory Consequences of Oculomotor Commands? Optimal Integration of the Predicted and the Actual Sensory Feedback
Siavash Vaziri, Jörn Diedrichsen, Reza Shadmehr
Journal of Neuroscience 19 April 2006, 26 (16) 4188-4197; DOI: 10.1523/JNEUROSCI.4747-05.2006

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Why Does the Brain Predict Sensory Consequences of Oculomotor Commands? Optimal Integration of the Predicted and the Actual Sensory Feedback
Siavash Vaziri, Jörn Diedrichsen, Reza Shadmehr
Journal of Neuroscience 19 April 2006, 26 (16) 4188-4197; DOI: 10.1523/JNEUROSCI.4747-05.2006
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Systems/Cognitive

  • Influence of Reward on Corticospinal Excitability during Movement Preparation
  • Identification and Characterization of a Sleep-Active Cell Group in the Rostral Medullary Brainstem
  • Gravin Orchestrates Protein Kinase A and β2-Adrenergic Receptor Signaling Critical for Synaptic Plasticity and Memory
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.