Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
This Week in The Journal

This Week in The Journal

Journal of Neuroscience 17 May 2006, 26 (20) i
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Embedded Image Cellular/Molecular

Microarray in 5 Regions and 8 Strains

Noah E. Letwin, Neri Kafkafi, Yoav Benjamini, Cheryl Mayo, Bryan C. Frank, Troung Luu, Norman H. Lee, and Greg I. Elmer

(see pages 5277–5287)

This week, Letwin et al. began a search for genes that underlie complex behaviors, eschewing the conventional hunt for individual genes in favor of a behavioral genetics approach. They fabricated microarrays containing >26,000 mouse cDNAs. Gene expression patterns were measured across five brain regions—the prefrontal cortex, ventral striatum, temporal lobe, periaqueductal gray, and cerebellum—and across eight inbred strains of mice that are considered genetically and behaviorally diverse. By the authors’ criteria, each region had hundreds (range, 245–1251) of regionally enriched genes that were conserved across strains. Roughly similar numbers of genes differed in each region between strains. In parallel, they compared behavioral phenotypes for anxiety, locomotor activity, ethanol-induced locomotor activity, and seizure susceptibility, and tried to link the regional expression differences with behavioral phenotypes. Some of the genes that correlated with behaviors were linked to already established quantitative trait loci, thus validating the potential utility of this daunting task.⇓

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Gene expression patterns were profiled in five brain regions (CR, PG, PF, TL, VS) in eight inbred mouse strains (C3H, BALB, DBA, SJ, AJ, C57, 129, FVB). See the article by Letwin et al. for details.

Embedded Image Development/Plasticity/Repair

Small Molecule p75NTR Ligands

Stephen M. Massa, Youmei Xie, Tao Yang, Anthony W. Harrington, Mi Lyang Kim, Sung Ok Yoon, Rosemary Kraemer, Laura A. Moore, Barbara L. Hempstead, and Frank M. Longo

(see pages 5288–5300)

The neurotrophin receptor p75NTR is a bit of a chameleon, leading to apoptosis or cell survival, depending on the activating ligand and on the expression of tropomyosin-related kinase (Trk) neurotrophin receptors. Binding of nerve growth factor (NGF) to p75NTR promotes neuron survival, whereas proNGF induces cell death, as does the unbound monomeric p75NTR. In this issue, Massa et al. report on several small nonpeptide ligands that bind p75NTR. The authors used virtual, or in silico, screening to identify compounds similar to NGF β-hairpin loop 1. Four loop 1 mimic (LM11A) compounds had neurotrophic, prosurvival activity in cultured mouse hippocampal neurons. Several criteria supported their action as ligands for monomeric p75NTR. Specifically, the compounds did not promote survival of p75NTR−/− neurons, and they competed with NGF for binding to p75NTR-Fc but not TrkA-Fc. The LM11A compounds also displaced a p75NTR antibody targeted to the neurotrophin-binding domain, and they activated signaling molecules downstream of p75NTR.

Embedded Image Behavioral/Systems/Cognitive

Nociceptor Stimulation and the fMRI

Belinda Susanne Ruehle, Hermann Otto Handwerker, Jochen Klaus Maria Lennerz, Ralf Ringler, and Clemens Forster

(see pages 5492–5499)

Ruehle et al. used functional magnetic resonance imaging (fMRI) in 13 willing human subjects to visualize the brain regions that contribute to acute pain versus inflammatory pain and hyperalgesia. Nociceptive sensory neurons, or C-fibers, can be subdivided into polymodal mechano-heat-responsive units (CMH) that respond to mechanical and thermal stimuli, and mechano-insensitive units (CMi) that become sensitive to mechanical stimuli only after inflammation. The authors used low-intensity transcutaneous stimulation (TCS) to selectively activate CMH nociceptors, and stronger intracutaneous stimulation (ICS) to activate CMi neurons. The subjects described TCS-induced pain as “stinging” and ICS-induced pain as “deep,” “pounding,” or “dull”. All subjects found one or both unpleasant. Both stimuli activated known pain-processing brain areas, but each stimulus also activated distinct areas. TCS activated nocifensive motor response centers necessary for an immediate withdrawal response, whereas only ICS increased activity in the posterior cingulate cortex thought to be involved in pain memory and aversion.

Embedded Image Neurobiology of Disease

Corticosteroids and Rat Neural Stem Cells

Maria Sundberg, Suvi Savola, Anni Hienola, Laura Korhonen, and Dan Lindholm

(see pages 5402–5410)

In this week’s Journal, Sundberg et al. examined potential links between stress, steroids, and stem cells. The authors reported that neuronal stem cells (NSCs) isolated from embryonic rat brains expressed glucocorticoid receptors (GRs) and mineralocorticoid receptors. The potent synthetic glucocorticoid dexamethasone (Dex) also decreased NSC proliferation in vivo. A 3 d treatment of embryonic day 14 pregnant rats reduced NSCs in the pups by one-third, an effect attributed to decreased proliferation rather than increased cell death. The authors estimated that the treatment half-saturated glucocorticoid receptors, making it plausible that the effects could occur under physiological conditions. In vitro, Dex activation of GRs increased activity of the ubiquitin proteasome system but not the glycogen synthase kinase-β signaling pathway, both of which regulate the cell cycle protein cyclin D1. Dex increased the ubiquitination of cyclin D1, thereby targeting it for degradation and blunting its proliferative effects. Overexpression of cyclin D1 increased NSC proliferation and offset the effect of Dex.

Back to top

In this issue

The Journal of Neuroscience: 26 (20)
Journal of Neuroscience
Vol. 26, Issue 20
17 May 2006
  • Table of Contents
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
This Week in The Journal
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
This Week in The Journal
Journal of Neuroscience 17 May 2006, 26 (20) i

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
This Week in The Journal
Journal of Neuroscience 17 May 2006, 26 (20) i
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Cellular/Molecular
    • Development/Plasticity/Repair
    • Behavioral/Systems/Cognitive
    • Neurobiology of Disease
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • This Week in The Journal
  • This Week in The Journal
  • This Week in The Journal
Show more This Week in The Journal
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.