Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
This Week in The Journal

This Week in The Journal

Journal of Neuroscience 31 May 2006, 26 (22) i
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Embedded Image Cellular/Molecular

Fast and Synchronous, Slow and Asynchronous

Takeshi Sakaba

(see pages 5863–5871)

Synaptic vesicles have been divided into distinct pools based on their release kinetics. Fast-releasing and slowly releasing pools were initially detected using step-wise increases in intracellular calcium, but this week Sakaba examined vesicular release in response to more physiological stimuli: action potential-like depolarizations of rat calyx of Held neurons. Using a deconvolution method, the author estimated the quantal release rate and separated synchronous and asynchronous release populations. The analysis suggested that 80% of the fast-releasing and 60% of slowly releasing vesicles were released during a 100 Hz train. Presynaptic capacitance measurements supported these estimates. By blocking the calcium/calmodulin-dependent recovery of the fast-releasing pool, the author was able to examine the slow-releasing pool of vesicles in isolation. Synchronous release primarily consisted of fast-releasing vesicles, whereas asynchronous release was carried mainly by slowly releasing vesicles. It took a 300 Hz train to deplete both vesicle populations.

Embedded Image Development/Plasticity/Repair

Stroke Recovery and the Contralateral Hemisphere

Martin Lotze, Jochen Markert, Paul Sauseng, Julia Hoppe, Christian Plewnia, and Christian Gerloff

(see pages 6096–6102)

Recovery after a brain injury such as a hemispheric stroke can involve not only both local recovery and repair but perhaps compensation from distant regions, including the contralateral hemisphere. This week, Lotze et al. examined a group of patients with a history of an ischemic stroke involving the internal capsule. These patients initially had significant movement impairment in the affected hand but then recovered almost fully. The authors used functional magnetic resonance imaging to compare activation of motor areas in the damaged and contralateral hemispheres during a finger-tapping task. Cortical activation ipsilateral to the moving hand (contralateral to the damaged hemisphere) was greater in the stroke patients than in control subjects. To “jam” functional activity, the authors used transcranial magnetic stimulation. Stimulation in the contralateral dorsal premotor cortex, primary motor cortex, and superior parietal lobe (SPL) produced timing errors, and SPL stimulation compromised accuracy as well.

Embedded Image Behavioral/Systems/Cognitive

A BOLD View of Saccadic Suppression

Ignacio Vallines and Mark W. Greenlee

(see pages 5965–5969)

Fortunately, the visual system doesn't deliver a high-resolution image during saccadic eye movements; otherwise, life would consist of an endless train of blurry images each time we moved or the world around us moved. This visual suppression process must involve cortical areas because it precedes movement. This week, Vallines and Greenlee propose primary visual cortex (V1) as a site of saccadic suppression. They measured BOLD (blood oxygen level-dependent) responses to Gabor patches: blurred images of contrasting lines. The authors first mapped the location encoding the stimulus in V1. The four subjects were then presented with the stimuli for 8 ms before the eye made a saccade to a visual target. Although the stimulus was always presented to a stationary retina, discrimination was degraded and V1 responses were smaller the closer the stimulus was presented to a saccade, consistent with involvement of V1 in saccadic suppression.

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Immediately before the onset of a saccade, four Gabor stimuli were simultaneously flashed for 8 ms. The subjects then moved their gaze from a central fixation point to the target (red dot). See the article by Vallines and Greenlee for details.

Embedded Image Neurobiology of Disease

Tracking Pseudohyperphosphorylated Tau In Vitro

Neelam Shahani, Srinivasa Subramaniam, Tobias Wolf, Christian Tackenberg, and Roland Brandt

(see pages 6103–6114)

Accumulation of intracellular hyperphosphorylated tau-containing fibrils is a hallmark of Alzheimer's disease as well as several other tauopathies. This week, Shahani et al. examined the short-term effects of an EGFP (enhanced green fluorescent protein)-labeled pseudohyperphosphorylated (PHP) tau on organotypic cultures. The PHP tau had glutamate residues instead of the normally phosphorylated serine and threonine residues, glutamate acting as an electrostatic mimic for phosphorylated residues. Using Sindbis virus, the authors expressed wild-type and PHP tau in mouse hippocampal slices. Three days later, extracellular lactate dehydrogenase, an indicator of membrane damage, was greatly increased in the PHP slices, as was caspase-3 activity and DNA fragmentation, suggestive of apoptotic cell death. However, some cells showed swollen cell bodies, not consistent with purely apoptotic cell death. Tau-mediated death was concentrated in CA3 and the dentate gyrus. Spine density and morphology were remarkably stable in the presence of PHP tau.

Back to top

In this issue

The Journal of Neuroscience: 26 (22)
Journal of Neuroscience
Vol. 26, Issue 22
31 May 2006
  • Table of Contents
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
This Week in The Journal
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
This Week in The Journal
Journal of Neuroscience 31 May 2006, 26 (22) i

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
This Week in The Journal
Journal of Neuroscience 31 May 2006, 26 (22) i
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Cellular/Molecular
    • Development/Plasticity/Repair
    • Behavioral/Systems/Cognitive
    • Neurobiology of Disease
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • This Week in The Journal
  • This Week in The Journal
  • This Week in The Journal
Show more This Week in The Journal
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.