Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
This Week in The Journal

This Week in The Journal

Journal of Neuroscience 21 June 2006, 26 (25) i
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Embedded Image Cellular/Molecular

Up Close with Synaptobrevin

Ferenc Deák, Ok-Ho Shin, Ege T. Kavalali, and Thomas C. Südhof

(see pages 6668–6676)

The synaptic vesicle protein synaptobrevin is an essential component of the vesicle release machinery along with its plasma membrane partners (syntaxin and SNAP-25), although in the absence of synaptobrevin release is not completely eliminated. Deák et al. explored the structural requirements of synaptobrevin function by using engineered constructs to rescue release in hippocampal neurons cultured from synaptobrevin-deficient mice. Cellubrevin, which has divergent N- and C-terminal domains, but a nearly identical central SNARE motif with synaptobrevin, rescued transmission. An electrostatic interaction between arginine (R) and glutamine (Q) in the “zero layer” of each SNARE was not essential because an R-Q substitution in synaptobrevin rescued evoked and spontaneous release. However, spacing between the SNARE motif and C-terminal transmembrane domain was critical. Synaptobrevin with a 12-residue insertion between the SNARE motif and the transmembrane region provided only partial rescue, and synaptobrevin with a 24-residue insertion failed to rescue any function.

Embedded Image Development/Plasticity/Repair

Switching between Fear and Attraction

Stephanie Moriceau, Donald A. Wilson, Seymour Levine, and Regina M. Sullivan

(see pages 6737–6748)

Neonatal rats learn rapidly to use odors to identify their mother. Pups are aided in this task by a boost in odor-preference learning and a deficit in odor-aversion learning, in a sensitive period before postnatal day 10 (P10). In this week's Journal, Moriceau et al. investigated the role of corticosterone (CORT) during the sensitive period. Rat pups that received a shock paired with odor at P8 learned an odor preference. However, systemic CORT injection 24 h and 30 min before pairing prematurely ended the sensitive period, resulting in odor aversion learning and activation of the amygdala. Conversely, removal of CORT by adrenalectomy prolonged the sensitive period. After adrenalectomy, P12 rats learned odor-shock preference rather than aversion and displayed increased olfactory bulb activity. The authors postulate that CORT acts as an amygdalar switch that favors the emergence of olfactory fear conditioning.

Embedded Image Behavioral/Systems/Cognitive

Kiss1 Neurons and Neuroendocrine Regulation

Jeremy T. Smith, Simina M. Popa, Donald K. Clifton, Gloria E. Hoffman, and Robert A. Steiner

(see pages 6687–6694)

Mammalian ovulation is the culmination of a complex neurohormonal signaling pathway. Gonadotropin-releasing hormone (GnRH) is normally under tonic negative feedback control, but estrogen triggers a GnRH/luteinizing hormone (LH) surge that leads to ovulation. This week, Smith et al. investigated the kisspeptins as potential mediators of this signaling cascade. This family of neuropeptides, encoded by the Kiss1 gene, is expressed in neurons of the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus. The authors hypothesized that activation of Kiss1 neurons is linked to the GnRH/LH surge. In rats, estradiol acted at the two nuclei with opposite effects. Kiss1 mRNA expression was inhibited in the arcuate nucleus but upregulated in the AVPV. The latter coincided with expression of the immediate early gene Fos, consistent with their activation during the GnRH/LH surge. As necessary for the authors' hypothesis, Kiss1 neurons also expressed the estradiol receptor ERα.

Embedded Image Neurobiology of Disease

Glial Progenitors and Experimental Glial Tumors

Marcela Assanah, Richard Lochhead, Alfred Ogden, Jeffrey Bruce, James Goldman, and Peter Canoll

(see pages 6781–6790)

In this week's Journal, Assanah et al. tested the potential of glial progenitor cells as cells of origin for malignant glial tumors. The authors injected adult rat brain white matter with a retrovirus driving expression of green fluorescent protein (GFP), and platelet-derived growth factor B (PDGF-B), a mitogen expressed by glial progenitors and in human gliomas. All injected animals developed brain tumors that resembled malignant glioblastomas. Interestingly, the tumors contained not only infected cells but also uninfected cells, suggesting a role for autocrine and paracrine messengers in tumor growth. Progenitors infected with a retrovirus expressing GFP alone did not cause tumors, rather these cells differentiated into oligodendrocytes. When two viruses expressing PDGF or GFP alone were coinjected, however, GFP-labeled progenitor cells in the tumor environment were recruited to proliferate and migrate, contributing to the tumor in what would appear to be a deadly game of follow the leader.⇓

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Large infiltrative tumors with the histological features of a human glioblastoma formed by 14 d after infection of adult rats with the PDGF-IRES-GFP retrovirus. This coronal section shows the tumor (areas in dark purple) extending across the corpus callosum into the contralateral hemisphere. See Assanah et al. for details.

Back to top

In this issue

The Journal of Neuroscience: 26 (25)
Journal of Neuroscience
Vol. 26, Issue 25
21 Jun 2006
  • Table of Contents
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
This Week in The Journal
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
This Week in The Journal
Journal of Neuroscience 21 June 2006, 26 (25) i

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
This Week in The Journal
Journal of Neuroscience 21 June 2006, 26 (25) i
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Cellular/Molecular
    • Development/Plasticity/Repair
    • Behavioral/Systems/Cognitive
    • Neurobiology of Disease
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • This Week in The Journal
  • This Week in The Journal
  • This Week in The Journal
Show more This Week in The Journal
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.