Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Differential Target-Dependent Actions of Coexpressed Inhibitory Dynorphin and Excitatory Hypocretin/Orexin Neuropeptides

Ying Li and Anthony N. van den Pol
Journal of Neuroscience 13 December 2006, 26 (50) 13037-13047; https://doi.org/10.1523/JNEUROSCI.3380-06.2006
Ying Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anthony N. van den Pol
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The hypocretin/orexin arousal system plays a key role in maintaining an alert wake state. The hypocretin peptide is colocalized with an opioid peptide, dynorphin. As dynorphin may be coreleased with hypocretin, we asked what action simultaneous stimulation with the excitatory neuropeptide hypocretin and the inhibitory peptide dynorphin might exert on cells postsynaptic to hypocretin axons, including hypocretin neurons. Hypocretin neurons received direct synaptic contact from other hypocretin neurons but showed little direct response to hypocretin. Here, we show that mouse hypocretin neurons are acutely sensitive to dynorphin. Dynorphin inhibits the hypocretin system by direct postsynaptic actions (hyperpolarization, decreased spike frequency, increased GIRK (G-protein-gated inwardly rectifying K+ channel) current, and attenuated calcium current, and indirectly by reducing excitatory synaptic tone. Interestingly, a selective antagonist of κ-opioid receptors enhanced activity of the hypocretin system, suggesting ongoing depression by endogenous hypothalamic opioids. Electrical stimulation of hypothalamic microslices that contained hypocretin cells and their axons evoked dynorphin release. Costimulation with dynorphin and hypocretin had three different effects on neurons postsynaptic to hypocretin axons: direct response to only one or the other of the two peptides [hypocretin cells respond to dynorphin, arcuate neuropeptide Y (NPY) cells respond to hypocretin], differential desensitization causing shift from inhibitory current to excitatory current with repeated coexposure (melanin-concentrating hormone neurons), synergistic direct excitation by hypocretin and presynaptic attenuation of inhibition by dynorphin (arcuate NPY neurons). These results suggest that hypocretin neurons may be able to exercise a high degree of modulatory control over postsynaptic targets using multiple neuropeptides with target-dependent actions.

  • arousal
  • attention
  • feeding
  • lateral hypothalamus
  • neuroendocrine
  • sleep
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 26 (50)
Journal of Neuroscience
Vol. 26, Issue 50
13 Dec 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential Target-Dependent Actions of Coexpressed Inhibitory Dynorphin and Excitatory Hypocretin/Orexin Neuropeptides
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Differential Target-Dependent Actions of Coexpressed Inhibitory Dynorphin and Excitatory Hypocretin/Orexin Neuropeptides
Ying Li, Anthony N. van den Pol
Journal of Neuroscience 13 December 2006, 26 (50) 13037-13047; DOI: 10.1523/JNEUROSCI.3380-06.2006

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Differential Target-Dependent Actions of Coexpressed Inhibitory Dynorphin and Excitatory Hypocretin/Orexin Neuropeptides
Ying Li, Anthony N. van den Pol
Journal of Neuroscience 13 December 2006, 26 (50) 13037-13047; DOI: 10.1523/JNEUROSCI.3380-06.2006
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles

Behavioral/Systems/Cognitive

  • Influence of Reward on Corticospinal Excitability during Movement Preparation
  • Identification and Characterization of a Sleep-Active Cell Group in the Rostral Medullary Brainstem
  • Gravin Orchestrates Protein Kinase A and β2-Adrenergic Receptor Signaling Critical for Synaptic Plasticity and Memory
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.