Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
This Week in The Journal

This Week in The Journal

Journal of Neuroscience 13 December 2006, 26 (50) i
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Embedded Image Cellular/Molecular

With and without the 3 Mints

Angela Ho, Wade Morishita, Deniz Atasoy, Xinran Liu, Katsuhiko Tabuchi, Robert E. Hammer, Robert C. Malenka, and Thomas C. Südhof

(see pages 13089–13101)

You can tell a lot about a protein by what it hangs out with. The three Mints (also called X11-like proteins) bind to multiple synaptic proteins, and knock-out studies have suggested that they may indeed be necessary in synaptic transmission. But different isoforms can complement each other's function; thus, it has been difficult to come to firm conclusions using single knock-outs. This week, Ho et al. deleted the Mints using constitutive and conditional knock-out strategies. Deletion of Mint 1 and 2, the two isoforms specifically expressed in neurons, caused most mice to die at birth. The 20% that survived had ataxia and reduced body weight. In the double knock-outs, whole-cell recording of hippocampal neurons revealed lowered synaptic strength, a twofold decrease in the frequency of miniature EPSCs, and enhanced paired-pulse facilitation, indicative of a presynaptic action of Mint 1 and 2. Similar results were obtained with acute ablation of Mint 1/2/3.

Embedded Image Development/Plasticity/Repair

Born-Again Neurons in Mice and Men

John J. Ohab, Sheila Fleming, Armin Blesch, and S. Thomas Carmichael

(see pages 13007–13016)

Jadranka Macas, Christian Nern, Karl H. Plate, and Stefan Momma

(see pages 13114–13119)

Stroke not only causes cell death, but it also stimulates possible recovery through neuronal regeneration in tissues near the infarct, according to two separate studies published this week. Using histological analyses in a large collection of postmortem human brains, Macas et al. found increased numbers of neuronal precursor cells, even in patients of advanced age who had suffered ischemia. Because recent studies have coupled neurogenesis to the formation of new blood vessels, Ohab et al. tested the link in a model of focal stroke in mice. These authors showed that stroke induced the long-distance migration of thousands of newly born neuroblasts from the subventricular zone to peri-infarct cortex. The new cells associated with peri-infarct blood vessels in a region of active vascular remodeling. When Ohab et al. added stromal-derived factor 1 and angiopoietin 1, which are produced by the vasculature, the number of newly formed neurons increased.

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Proliferating cells, marked by Ki-67 (arrowheads), were increased close to the lateral ventricular wall in a patient that had a large ipsilateral ischemic stroke 5 d previously. See Macas et al. for details.

Embedded Image Behavioral/Systems/Cognitive

Localizing Vocal Emotions

Jane E. Warren, Disa A. Sauter, Frank Eisner, Jade Wiland, M. Alexander Dresner, Richard J. S. Wise, Stuart Rosen, and Sophie K. Scott

(see pages 13067–13075)

The sound of laughter or cheering typically makes us smile or laugh. Warren et al. wanted to know how this happens. A facial expression showing an emotion can produce a so-called “mirror” response or similar facial expression in an observer. The authors used functional magnetic resonance imaging to determine whether similar mirror responses were also triggered by vocal expressions of emotion. Study participants were asked to listen to human voices conveying positive valence such as amusement and triumph. Listening to these “positive-valence” vocalizations activated specific premotor areas in the left posterior inferior frontal region, an area involved in control of facial movement. The activation was not attributable to facial movement per se. Thus, listening to vocal expressions of emotions appears to automatically engage preparation for orofacial gestures corresponding to the emotional content of the stimulus.

Embedded Image Neurobiology of Disease

Ginkgo biloba and Oligomeric Aβ in Worms

Yanjue Wu, Zhixin Wu, Peter Butko, Yves Christen, Mary P. Lambert, William L. Klein, Christopher D. Link, and Yuan Luo

(see pages 13102–13113)

Ginkgo biloba, the ancient plant that fed dinosaurs, is widely used in patients with Alzheimer's disease (AD). This week, Wu et al. examined the effects of a standard preparation of plant extract, EGb 761, in Caenorhabditis elegans. Nematodes do not express endogenous β amyloid (Aβ), the peptide that oligomerizes and form deposits in AD brains. Nonetheless, transgenic expression of Aβ causes striking pathology in C. elegans, such as muscle paralysis and problems with chemotaxis, which were alleviated by EGb 761. Rescue of these behaviors was accompanied by a reduction in Aβ oligomers. The beneficial effects of G. biloba are thought to result from neuroprotective and antioxidant properties. But in the transgenic C. elegans, reducing oxidative stress with the antioxidant l-ascorbic acid was not nearly as effective in suppressing paralysis as EGb 761. Thus, the beneficial effects of the extract may result from block of Aβ oligomerization.

Back to top

In this issue

The Journal of Neuroscience: 26 (50)
Journal of Neuroscience
Vol. 26, Issue 50
13 Dec 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
This Week in The Journal
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
This Week in The Journal
Journal of Neuroscience 13 December 2006, 26 (50) i

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
This Week in The Journal
Journal of Neuroscience 13 December 2006, 26 (50) i
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Cellular/Molecular
    • Development/Plasticity/Repair
    • Behavioral/Systems/Cognitive
    • Neurobiology of Disease
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • This Week in The Journal
  • This Week in The Journal
  • This Week in The Journal
Show more This Week in The Journal
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.