Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Neurobiology of Disease

Subcutaneous Nogo Receptor Removes Brain Amyloid-β and Improves Spatial Memory in Alzheimer's Transgenic Mice

James H. Park, Gabriel A. Widi, David A. Gimbel, Noam Y. Harel, Daniel H. S. Lee and Stephen M. Strittmatter
Journal of Neuroscience 20 December 2006, 26 (51) 13279-13286; DOI: https://doi.org/10.1523/JNEUROSCI.4504-06.2006
James H. Park
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gabriel A. Widi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. Gimbel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Noam Y. Harel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel H. S. Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen M. Strittmatter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The production and aggregation of cerebral amyloid-β (Aβ) peptide are thought to play a causal role in Alzheimer's disease (AD). Previously, we found that the Nogo-66 receptor (NgR) interacts physically with both Aβ and the amyloid precursor protein (APP). The inverse correlation of Aβ levels with NgR levels within the brain may reflect regulation of Aβ production and/or Aβ clearance. Here, we assess the potential therapeutic benefit of peripheral NgR-mediated Aβ clearance in APPswe/PSEN-1ΔE9 transgenic mice. Through site-directed mutagenesis, we demonstrate that the central 15–28 aa of Aβ associate with specific surface-accessible patches on the leucine-rich repeat concave side of the solenoid structure of NgR. In transgenic mice, subcutaneous NgR(310)ecto-Fc treatment reduces brain Aβ plaque load while increasing the relative levels of serum Aβ. These changes in Aβ are correlated with improved spatial memory in the radial arm water maze. The benefits of peripheral NgR administration are evident when therapy is initiated after disease onset. Thus, the peripheral association of NgR(310)ecto-Fc with central Aβ residues provides an effective therapeutic approach for AD.

  • Alzheimer's disease
  • β-amyloid
  • Nogo-66 receptor
  • axon
  • therapy
  • radial arm water maze
  • degeneration
  • amyloid precursor protein
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 26 (51)
Journal of Neuroscience
Vol. 26, Issue 51
20 Dec 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Subcutaneous Nogo Receptor Removes Brain Amyloid-β and Improves Spatial Memory in Alzheimer's Transgenic Mice
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Subcutaneous Nogo Receptor Removes Brain Amyloid-β and Improves Spatial Memory in Alzheimer's Transgenic Mice
James H. Park, Gabriel A. Widi, David A. Gimbel, Noam Y. Harel, Daniel H. S. Lee, Stephen M. Strittmatter
Journal of Neuroscience 20 December 2006, 26 (51) 13279-13286; DOI: 10.1523/JNEUROSCI.4504-06.2006

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Subcutaneous Nogo Receptor Removes Brain Amyloid-β and Improves Spatial Memory in Alzheimer's Transgenic Mice
James H. Park, Gabriel A. Widi, David A. Gimbel, Noam Y. Harel, Daniel H. S. Lee, Stephen M. Strittmatter
Journal of Neuroscience 20 December 2006, 26 (51) 13279-13286; DOI: 10.1523/JNEUROSCI.4504-06.2006
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Neurobiology of Disease

  • Implications of Oligomeric Amyloid-Beta (oAβ42) Signaling through α7β2-Nicotinic Acetylcholine Receptors (nAChRs) on Basal Forebrain Cholinergic Neuronal Intrinsic Excitability and Cognitive Decline
  • Impaired θ-γ Coupling Indicates Inhibitory Dysfunction and Seizure Risk in a Dravet Syndrome Mouse Model
  • Oxidative Damage and Antioxidant Response in Frontal Cortex of Demented and Nondemented Individuals with Alzheimer's Neuropathology
Show more Neurobiology of Disease
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.