Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Differential Recruitment of the Hippocampus, Medial Prefrontal Cortex, and the Human Motion Complex during Path Integration in Humans

Thomas Wolbers, Jan M. Wiener, Hanspeter A. Mallot and Christian Büchel
Journal of Neuroscience 29 August 2007, 27 (35) 9408-9416; DOI: https://doi.org/10.1523/JNEUROSCI.2146-07.2007
Thomas Wolbers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan M. Wiener
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hanspeter A. Mallot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian Büchel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Path integration, the ability to sense self-motion for keeping track of changes in orientation and position, constitutes a fundamental mechanism of spatial navigation and a keystone for the development of cognitive maps. Whereas animal path integration is predominantly supported by the head-direction, grid, and place cell systems, the neural foundations are not well understood in humans. Here we used functional magnetic resonance imaging and a virtual rendition of a triangle completion paradigm to test whether human path integration recruits a cortical system similar to that of rodents and nonhuman primates. Participants traveled along two legs of a triangle before pointing toward the starting location. In accordance with animal models, stronger right hippocampal activation predicted more accurate updating of the starting location on a trial-by-trial basis. Moreover, between-subjects fluctuations in response consistency were negatively correlated with bilateral hippocampal and medial prefrontal activation, and bilateral recruitment of the human motion complex (hMT+) covaried with individual path integration capability. Given that these effects were absent in a perceptual control task, the present study provides the first evidence that visual path integration is related to the dynamic interplay of self-motion processing in hMT+, higher-level spatial processes in the hippocampus, and spatial working memory in medial prefrontal cortex.

  • path integration
  • navigation
  • virtual reality
  • spatial memory
  • hippocampus
  • functional MRI
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 27 (35)
Journal of Neuroscience
Vol. 27, Issue 35
29 Aug 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential Recruitment of the Hippocampus, Medial Prefrontal Cortex, and the Human Motion Complex during Path Integration in Humans
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Differential Recruitment of the Hippocampus, Medial Prefrontal Cortex, and the Human Motion Complex during Path Integration in Humans
Thomas Wolbers, Jan M. Wiener, Hanspeter A. Mallot, Christian Büchel
Journal of Neuroscience 29 August 2007, 27 (35) 9408-9416; DOI: 10.1523/JNEUROSCI.2146-07.2007

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Differential Recruitment of the Hippocampus, Medial Prefrontal Cortex, and the Human Motion Complex during Path Integration in Humans
Thomas Wolbers, Jan M. Wiener, Hanspeter A. Mallot, Christian Büchel
Journal of Neuroscience 29 August 2007, 27 (35) 9408-9416; DOI: 10.1523/JNEUROSCI.2146-07.2007
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Effects of within-subjects performance variability
    • Effects of between-subjects performance variability
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Systems/Cognitive

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.