Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
This Week in The Journal

This Week in The Journal

Journal of Neuroscience 23 July 2008, 28 (30) i
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Embedded Image Cellular/Molecular

Modeling Electrophysiological Diversity

Cengiz Günay, Jeremy R. Edgerton, and Dieter Jaeger

(see pages 7476–7491)

Variations in morphology and ion-channel expression largely determine the electrophysiological properties of neurons. To investigate whether such variations are sufficient to explain the electrophysiological variability of globus pallidus neurons recorded in brain slices, Günay et al. created >100,000 computer models using three realistic morphologies and variable levels of nine ionic conductances. The models' properties (e.g., spike threshold, waveform, afterhyperpolarization, firing rate) largely replicated the variability recorded in real neurons. Most properties were influenced by multiple conductances, and most conductances influenced multiple properties. Furthermore, complex interactions between conductances produced great variability in the magnitude of the effect produced by changing a single conductance; even the sign of the effect could change, depending on the density of the other conductances in a model. Impressively, the authors validated the model approach by using low doses of channel blockers to decrease conductance density in real neurons and produce the variability predicted by the model.

Embedded Image Development/Plasticity/Repair

Neuronal Death Pathways

Li-ying Yu, Mart Saarma, and Urmas Arumäe

(see pages 7467–7475)

Programmed cell death pathways are generally divided into two broad categories: the intrinsic pathway, in which cellular stress (e.g., oxidative stress) leads to release of cytochrome c from mitochondria, which leads to activation of caspase-9, which activates effector caspases that degrade cellular proteins; and the extrinsic pathway, in which extracellular ligands bind to death receptors, which activate Fas-activated death domain (FADD) protein, which leads to activation of caspase-8, which activates effector caspases. This week, Yu et al. describe the apoptosis pathway activated by withdrawal of GDNF and BDNF from cultured midbrain dopaminergic neurons. The normal intrinsic pathway was not involved, because cytochrome c was not released from mitochondria. Nonetheless, caspase-9 was involved. Death-receptor pathways were also involved, because blocking FADD or caspase-8 prevented apoptosis. Interestingly, this apoptosis pathway is different than that induced by withdrawal of GDNF from sympathetic neurons.

Embedded Image Behavioral/Systems/Cognitive

Receptive Field Properties in Mouse Visual Cortex

Cristopher M. Niell and Michael P. Stryker

(see pages 7520–7536)

Niell and Stryker have performed a broad quantitative study of the receptive field properties of neurons in mouse visual cortex and classified the neurons based on laminar position and waveform (narrow spiking vs broad spiking, which are thought to correspond to inhibitory and excitatory neurons, respectively). Despite the poor visual acuity and lack of cortical columnar organization in mice, mouse visual cortical neurons have many of the properties seen in other species, including orientation and spatial-frequency tuning, simple and complex responses, and contrast-invariant tuning. The results provide information about the optimal stimulus parameters to use in future studies of mouse visual processing, and most importantly, they open the door to using mouse genetic strategies such as targeted gene disruption and exogenous gene expression to investigate how the cortex generates well-established sensory response properties.

Embedded Image Neurobiology of Disease

Unexpected Effects of Dopamine Withdrawal and Replacement

Li Liang, Maholn R. Delong, and Stella Papa

(see pages 7537–7547)

A prominent model of Parkinson's disease (PD) posits that chronic dopamine depletion causes opposite effects on striatal medium spiny neurons of the direct (striatonigral) and indirect (striatopallidal) pathways. Specifically, striatonigral neurons (∼50% of the population) are thought to express primarily D1 receptors and be less excitable in PD, whereas striatopallidal neurons are thought to express primarily D2 receptors and be more excitable in PD. Moreover, l-DOPA is thought to reverse PD symptoms by reversing these changes in excitability. Experiments reported by Liang et al. contradict this model. The authors recorded individual striatal neurons in parkinsonian monkeys before and after administering l-DOPA. Contrary to expectations, all parkinsonian neurons had a higher firing rate than previously reported for striatal neurons in normal monkeys. Furthermore, l-DOPA further increased firing rate in 64% of neurons. Thus, excitability appears to be increased in neurons of both pathways, and l-DOPA actions do not simply reverse this effect.

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

After exposure to the toxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), macaques develop parkinsonian symptoms. A long-lasting hypothesis about the neuronal bases of these symptoms needs refinement. See the article by Liang et al. for details.

Back to top

In this issue

The Journal of Neuroscience: 28 (30)
Journal of Neuroscience
Vol. 28, Issue 30
23 Jul 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
This Week in The Journal
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
This Week in The Journal
Journal of Neuroscience 23 July 2008, 28 (30) i

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
This Week in The Journal
Journal of Neuroscience 23 July 2008, 28 (30) i
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Cellular/Molecular
    • Development/Plasticity/Repair
    • Behavioral/Systems/Cognitive
    • Neurobiology of Disease
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • This Week in The Journal
  • This Week in The Journal
  • This Week in The Journal
Show more This Week in The Journal
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.