Abstract
This study describes a functional magnetic resonance imaging study of humans engaged in long-term memory (LTM) and working memory tasks. A pattern classifier learned to identify patterns of brain activity associated with viewing and making judgments about three categories of pictures (famous people, famous locations, and common objects). The evaluation of these stimuli relied on perception and long-term semantic and/or episodic memories. We investigated whether this classifier could successfully decode brain activity from a subsequent delayed paired-associate recognition working memory task that required the short-term retention of the same stimuli. We reasoned that the LTM-trained classifier would be able to decode delay-period activity only if that activity reflected, to some extent, the temporary activation of LTM. Our results demonstrated successful decoding: delay-period activity from a distributed network of brain regions matched learned patterns of activity for task-relevant stimuli to a greater extent than for task-irrelevant stimuli. In varying degrees throughout the delay, activity reflected the target (a retrospective code) and its associate (a prospective code) with considerable variability among subjects. Although prefrontal cortex (PFC) demonstrated category-specific patterns of activity during the LTM task, these patterns were not reinstated in PFC during the working memory task. We conclude that the short-term retention of information can be supported by the temporary reactivation of LTM representations.