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Mini-Symposium

A Double TRPtych: Six Views of Transient Receptor Potential
Channels in Disease and Health
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At the 2008 Annual Meeting of the Society for Neuroscience, a Mini-Symposium entitled “Contributions to TRP Channels to Neurological
Disease” included talks from six heads of newly established laboratories, each with a unique research focus, model system, and set of
experimental tools. Some of the questions addressed in these talks include the following. What is the role of transient receptor potential
(TRP) channels in pain perception? How do normally functioning TRP channels contribute to cell death pathways? What are the charac-
teristics of TRPpathies, disease states that result from overactive or underactive TRP channels? How are TRP channels regulated by signal
transduction cascades? This review summarizes recent results from those laboratories and provides six perspectives on the subject of TRP
channels and disease.

Key words: cation channel; melanocyte; mucolipidosis type IV; nociception; pain; TRP; amyotrophic lateral sclerosis/parkinsonism

dementia complex; taste; cell death; lysosomal storage disease; TRPA1; TRPMS5; TRPM7; TRPM8; TRPML1; TRPML3

Transient receptor potential (TRP) channels comprise a large
family of cation channels. The founding member of this family,
Drosophila TRP, is essential for phototransduction and is opened
in response to rhodopsin-coupled phospholipase C (PLC) signal-
ing (for review, see Montell, 2005). To date, >100 TRP channel
genes have been identified, in organisms ranging from yeast to
mice, and they are divided into seven distinct subclasses based on
their primary sequences. Equally diverse are the physiological
functions of TRP channels, in processes including taste, ther-
mosensation, hearing, and calcium and magnesium homeostasis
(for review, see Flockerzi, 2007). The breadth of TRP channel
functions, and the intensity of investigations into these functions,
is reflected in the large number of recent reviews covering aspects
of TRP biology, such as TRP channel pharmacology (Okuhara et
al., 2007), TRP channel structural biology (Gaudet, 2008), con-
nections of TRP channels and cell death (McNulty and Fonfria,
2005), trafficking of TRP channels (Ambudkar, 2007), and TRP
channels in disease (Nilius, 2007). The objective of the current re-
view is to summarize results presented, in six presentations, at a
Mini-Symposium at the 2008 Annual Meeting of the Society for
Neuroscience entitled “Contributions of TRP Channels to Neuro-
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logical Disease” (Table 1). This field is moving rapidly and seems
likely to be the focus of energetic investigation for years to come.

TRP channels contribute to pain sensation
Pain is a clinically important element of countless diseases. Sev-
eral members of the TRP channel family have been proposed to
play key roles in pain and inflammation (Jordt et al., 2003; Wang
and Woolf, 2005; Dhaka et al., 2006). In mammals, the initial
detection of noxious chemical, mechanical, or thermal stimuli, a
process referred to as nociception, is mediated by specialized so-
matosensory neurons called nociceptors. Natural plant-derived
irritants have served as powerful pharmacological tools for eluci-
dating the molecular mechanisms underlying nociception, as il-
lustrated by the use of capsaicin to identify the heat-activated ion
channel TRPV1 (Caterina et al., 1997). The characterization of
TRPV1-deficient animals has demonstrated an essential role for
TRPV1 in both heat transduction and inflammation-evoked
thermal hypersensitivity (Caterina et al., 2000). The menthol re-
ceptor TRPMS and the wasabi receptor TRPA1 have also been
proposed to play key roles in nociceptor function (McKemy et al.,
2002; Story et al., 2003; Jordt et al., 2004; Nagata et al., 2005). To
probe the physiological roles of these channels, Diana Bautista
(University of California, Berkeley, Berkeley, CA) and her col-
leagues in David Julius’ laboratory at the University of California,
San Francisco (San Francisco, CA) have generated TRPMS8- and
TRPA1-deficient mice and have tested them in a variety of in vitro
and in vivo assays.

TRPAL1 is activated by a number of environmental chemicals
that induce inflammatory pain. These include allyl isothiocya-
nate and allicin, the pungent compounds found in mustard and
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Table 1. TRP channels studied in our laboratories
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TRP family member Connection to disease or pathology

Reviewed by

TRPM7 Wild-type form promotes excitotoxic cell death (Aarts et al., 2003) Aarts and Tymianski, 2005
Hypomorphic variant associated with Guamanian amyotrophic lateral sclerosis/parkinsonism-demen-
tia complex (Hermosura et al., 2005) Hermosura and Garruto, 2007
Hypomorphic alleles cause melanocyte cell death and paralysis in zebrafish mutants (Kelsh et al.,
1996; Arduini and Henion, 2004; Cornell et al., 2004; Elizondo et al., 2005). luga and Lerner, 2007
TRPML1 Hypomorphic form causes MLIV (Bargal et al., 2000; Bassi et al., 2000; Sun et al., 2000) Slaugenhaupt, 2002; Bach, 2005
TRPA1 Wild-type form mediates inflammatory pain in mice (Bautista et al., 2006) Story, 2006
TRPM8 Wild-type form mediates cold-induced pain in mice (Bautista et al., 2007) Story, 2006
TRPML3 Mutant forms cause death of hair cells and melanocytes in mouse (Grimm et al., 2007; Kim et al.,
2007; Xu et al., 2007; Nagata et al., 2008) Cuajungco and Samie, 2008
TRPM5 TRPMS5 signal transduction pathways are relevant to drugs that modulate taste Liman, 2007

garlic extracts, acrolein, an o, 3-unstaurated aldehyde that acts as
an irritant in tear gas, vehicle exhaust and burning vegetation,
and volatile general anesthetics, such as isofluorane. In addition,
TRPAL is a target of endogenous inflammatory agents, including
products of lipid peroxidation and the proalgesic agent bradyki-
nin (Bandell et al., 2004; Jordt et al., 2004; Bautista et al., 2006;
Trevisani et al., 2007; Andersson et al., 2008). TRPA1-deficient
neurons show little to no response to these compounds, and
TRPAI1-deficient animals display attenuated pain behaviors or
hypersensitivity after exposure to these irritants (Bautista et al.,
2006; Kwan et al., 2006; Matta et al., 2008). These findings dem-
onstrate that TRPA1 is the main molecular site through which a
variety of environmental irritants and endogenous inflammatory
mediators activate the pain pathway.

Both TRPA1 and TRPMS8 had been proposed previously to
mediate cold nociception (McKemy et al., 2002; Peier et al., 2002;
Story et al., 2003). To elucidate the role of these channels in cold
sensation, cellular and behavioral cold responses were measured
in mice lacking TRPA1 or TRPMS. Cultured sensory neurons and
intact sensory nerve fibers from TRPMS8-deficient mice were
found to exhibit profoundly diminished responses to cold. Con-
sistent with this finding, these animals themselves showed clear
behavioral deficits with respect to their ability to discriminate
between cold and warm surfaces. TRPA1-deficient mice, how-
ever, displayed no such deficits (Bautista et al., 2007; Colburn et
al., 2007; Dhaka et al., 2007). These findings demonstrate an
essential and predominant role for TRPMS8 in thermosensation,
over a wide range of cold temperatures.

TRPM? contributes to ischemic cell death of neurons

Death of neurons occurs in neurodegenerative diseases and in
stroke, and there is evidence that normally functioning TRP fam-
ily members promote cell death in certain circumstances. Isch-
emic cell death is thought to involve a Ca** signaling, the gener-
ation of intracellular free radicals, and mitochondrial
dysfunction. The clinical failure and nonspecific effects of cal-
cium channel blockers and free radical scavengers highlight the
importance of determining the molecular events that cause isch-
emic death; only in this way will valid therapeutic targets be iden-
tified. Several channels of the TRPM family have been implicated
in ischemic cell death and represent novel targets for therapeutic
research. Indeed, TRPM7 knockdown both in vitro and in vivo
can prevent neuronal death in experimental models of stroke
(Aarts et al., 2003) (M. Aarts, unpublished observations). Dr.
Michelle Aarts (University of Toronto, Scarborough, Toronto,
Canada) has been studying the mechanism by which TRPM7
facilitates cell death in these models. Cation channels are believed
to regulate acute neuronal death, via both the regulation of intra-

cellular Ca** and intracellular signaling. However, what interac-
tions exist between TRPM channel proteins and what part each
protein plays in ischemic disease remain unknown. In this con-
text, it is intriguing that the processes in anoxic injury as resolved
by TRPM7 knockdown are attributed to the TRPM2 channel in
vitro. Recombinant TRPM2 is activated by the direct application
of both hydrogen peroxide and ADP ribose, the latter being a
cleavage product released from mitochondria during oxidative
stress (Kraft et al., 2004; Miller, 2004; Kolisek et al., 2005). Re-
cently, TRPM2 was shown to be upregulated in brain ischemia,
and its activation has been linked to the activity of polyADP
ribose polymerase, a nuclear enzyme that is activated in ischemic
injury (Fonfria et al., 2006). These findings suggest that TRPM7
and TRPM2 functionally interact during anoxia-induced cell
death in vitro.

TRPM channels within the cerebrovascular network may also
mediate constrictive forces that exacerbate tissue death after isch-
emic injury. This possibility is supported by new evidence that
TRPM members act as mechano-stimulated channels. Vascular
(smooth muscle) damage has been shown to lead to dramatic
enhancement of TRPM7 channel expression at the cell surface
(Numata et al., 2007b), and TRPM7 can be activated by cellular
swelling (Numata et al., 2007a). This vascular role may be linked
to the interaction of TRPM7 with cytoskeletal elements and to its
proposed role in regulating cell morphology (Dorovkov and
Ryazanov, 2004; Clark et al., 2006). TRPM4 activation by [Ca*"];
has also been shown to induce contraction in cerebral vessels
(Reading and Brayden, 2007). Together, these finding suggest
that TRPM channels may exacerbate ischemic conditions by de-
creasing critical blood flow to the brain. The identification of new
protein interactions will lead to discovery of the pathways that are
downstream of TRPM proteins and govern cell survival.

Mutations in the TRPMLI1 gene cause a lysosomal

storage disease

The functions of TRP channels in normal physiology are wide-
spread, and so an association between a variety of disease and
mutant TRP channel genes might be expected. One example is a
lysosomal storage disease, which include genetic conditions that
impair the function or localization of proteins that are responsi-
ble for the digestion or absorption of endocytosed materials. The
resulting cellular “indigestion” causes a buildup of intracellular
storage inclusions that contain unprocessed lipids, proteins, or
macromolecular complexes. Most lysosomal storage diseases are
associated with degenerative processes and cause severe develop-
mental delays, cognitive disabilities, blindness, and early death.
An example of such a disease is mucolipidosis type IV (MLIV)
(Slaugenhaupt, 2002; Bach, 2005), which is caused by mutations
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in a gene termed MCOLN] (Bargal et al., 2000; Bassi et al., 2000;
Sun et al.,, 2000). This gene encodes the ion channel TRPMLI,
which is localized in lysosomes. The debate over TRPMLI func-
tion focuses primarily on whether this channel (1) directly mod-
ulates membrane traffic within the lower portion of the endocytic
pathway (Piper and Luzio, 2004) or (2) regulates lysosomal ion
homeostasis (Miedel et al., 2008) (this controversy reviewed by
Zeevi et al., 2007). Identifying the role of TRPMLI in the endo-
cytic pathway will be absolutely crucial, because it will define the
direction of the future search for pharmacological interventions
for MLIV.

Membrane traffic delays have been demonstrated in human
skin fibroblasts affected by MLIV; this led to conclusion that
TRPMLLI directly regulates membrane traffic (LaPlante et al.,
2004; Treusch et al., 2004; Bach, 2005; Pryor et al., 2006). This is
the first indication that ion channels may be involved in intracel-
lular membrane fusion/fission events. However, a serous limita-
tion of this experimental system is that the chronic accumulation
of undigested lipids in these cells may affect the ability of traffic
markers to enter organelles, misleadingly manifesting as traffic
delays. In order to circumvent this problem, the group of Dr.
Kirill Kiselyov (University of Pittsburgh, Pittsburgh, PA) devel-
oped a small interfering RNA-driven, TRPMLI1 acute knock-
down system and tested the immediate effects of TRPMLI
knockdown on membrane traffic (Miedel et al., 2008). No mem-
brane traffic delays were detected in acutely TRPML1-deficient
cells, which argues that the basis of this disease is metabolic rather
than a defect in trafficking. This finding suggests that enzyme
replacement therapies for the treatment of MLIV should focus on
the formulation of modified enzymes to work in the MLIV-
specific ionic environment and emphasizes the need for a deeper
inquiry into TRPMLI permeability and regulation.

Like most lysosomal storage diseases, MLIV is a neurodegen-
erative disorder. Although degenerative processes have been
shown in all lysosomal storage diseases, a correlation between the
number of storage inclusions and the severity of the degenerative
processes is not always apparent. This suggests that a specific
mechanism set in motion by lysosomal deficiencies drives degen-
erative processes in these diseases. Dr. Kiselyov’s group found
that the suppression of lysosome function in lysosomal storage
diseases inhibits the utilization of aged mitochondria (Jennings et
al., 2006). The resulting buildup of effete mitochondria promotes
the proapoptotic effects of Ca>* and results in a higher percent-
age of cell death when the cells are stimulated by hormones and
neurotransmitters (Kim et al., 2007; Kiselyov and Muallem,
2008). Similar results have been reported recently in other exper-
imental systems (Pacheco et al., 2007; Settembre et al., 2008; Ver-
garajauregui et al., 2008). These results explain the specificity of
neurodegeneration in lysosomal storage diseases and suggest that
caspase inhibitors may be used as complimentary treatments for
lysosomal storage diseases.

Deafness in varitint-waddler mutant mice results from
constitutive activation of TRPML3

Although no disease has yet been associated with TRPML3, the
phenotype of mouse Trpml3 mutants suggest that this gene
should be considered a candidate locus in congenital diseases that
include sensorineural hearing loss. Thus, varitint-waddler (Va)
mutant mice, which are deaf and have vestibular impairment,
bear a semidominant mutation in the TRP channel-encoding
gene Trpml3 (Cloudman and Bunker, 1945; Deol, 1954; Cable
and Steel, 1998; Di Palma et al., 2002). Varitint-waddler mice
display several inner ear defects, including (1) reduction or elim-
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ination of the endocochlear potential, (2) anatomical alteration
of the stria vascularis, the cochlear structure that generates this
potential, with its marginal cells rounding up and losing their
cytoplasmic processes, and (3) degeneration and loss of sensory
hair cells, which display apical deformations at embryonic stages
and are later extruded from the sensorineural epithelium (Deol,
1954; Cable and Steel, 1998). The Va mutation results in an
alanine-to-proline substitution at residue 419 (A419P) of
TRPML3, and this is thought to break the « helix of the fifth
transmembrane domain (S5), near the pore (Di Palma et al.,
2002; Grimm et al., 2007). How this form of TRPML3 contributes
to cell death is unknown. Jaime Garcia-Anoveros (Northwestern
University, Evanston, IL) and his coworkers have been studying
this issue.

Is the effect of TRPML3 on cell viability cell autonomous? The
Garcia-Afioveros group demonstrated that many epithelial cells
that line the cochlear scala media and the vestibular endolym-
phatic compartments of the inner ear express TRPML3 mRNA
(Nagata et al., 2008). These include the marginal cells of the stria
vascularis and the equivalent dark cells of the vestibule, as well as
the cochlear and vestibular mechanosensory hair cells, which de-
generate in varitint-waddler mice. Furthermore, this group
showed that, when heterologously expressed in LLC-PK1-CL4
epithelial cells, which serve as a culture model for hair cells, a
TRPML3::GFP (green fluorescent protein) fusion protein accu-
mulated in lysosomal vacuoles as well as in espin-enlarged mi-
crovilli that resemble stereocilia (Nagata et al., 2008). When these
cells express the mutant TRPML3 (A419P), they die and are ex-
truded from the epithelium in a manner reminiscent of the de-
generation of hair cells in Va mice (Nagata etal., 2008). Together,
these findings suggest that hair cell death in varitint-waddler mice
occurs because of cell-autonomous expression of mutant
TRPML3.

What effect does the A419P mutation have on TRPML3 func-
tion? Like many other TRP channels, TRPML3 forms cation
channels that normally open only in response to high positive
potentials and display outer rectification. However, these chan-
nels can also open at negative potentials generating double recti-
fication (Kim et al., 2007; Nagata et al., 2008). TRPML3 channels
have a preference for calcium over sodium and potassium and are
blocked by gadolinium and verapamil but not by ruthenium red,
gentamycin, or amiloride (Xu et al., 2007; Nagata et al., 2008).
They have permeabilities ranging from 50 pS (at negative poten-
tials) to 70 pS (at positive potentials) (Nagata et al., 2008). The
A419P mutation does not affect either the conductance or per-
meability of the TRPML3 channel. Instead, this gain-of-function
mutation greatly enhances the open probability of the channel at
hyperpolarized potentials (Nagata et al., 2008). The result of this
hyperactivity is a large inwardly rectifying cationic current and
severe cellular depolarization (Grimm et al., 2007; Kim et al.,
2007; Xu et al., 2007; Nagata et al., 2007, 2008). Of note, recent
work from the Clapham laboratory indicates that the pale coat
color of varitint-waddler mutants likely results from the death of
melanocytes (Xu et al., 2007). In summary, these findings suggest
that constitutive activity of TRPML3 (A419P) channels at physi-
ological potentials likely underlies the melanocyte cell loss, hair
cell degeneration, and deafness that characterize varitint-waddler
mice.

TRPM7 prevents melanin-synthesis-dependent death of
embryonic melanocytes

TRPM?7 seems a prime candidate to be a disease locus because it is
required for viability of several cell types. Specifically, TRPM7
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knockdown in B-cells, retinoblastoma, and smooth-muscle cell
lines causes growth arrest and/or cell death (Nadler et al., 2001;
Hanano et al., 2004; He et al., 2005). Supporting an essential role
for TRPM7 in normal development, trpm7 mutants have been
isolated several times in phenotype-based mutagenesis screens in
zebrafish. Two of these alleles have been molecularly character-
ized; both carry mutations that cause a frame shift in sequence
encoding the intracellular C terminus (Elizondo et al., 2005). The
phenotype of embryos homozygous for either of these alleles re-
sembles that in embryos injected with trpm7 antisense oligonu-
cleotides, implying that the alleles are hypomorphs (loss-of-
function) (Elizondo et al., 2005). Zebrafish embryos
homozygous for mutant alleles of trpm7 display a range of phe-
notypes at various developmental stages. At embryonic stages,
trpm7 mutants are characterized by the death of embryonic me-
lanocytes and a transient period of paralysis (Kelsh et al., 1996;
Arduini and Henion, 2004; Cornell et al., 2004); at larval stages
and adult stages, they display dwarfism, abnormal skeletogenesis,
and kidney stones (Elizondo et al., 2005). Of note, knockdown of
TRPM?7 expression caused concomitant reduction of TRPM?2 ex-
pression in cultured cortical neurons (Aarts et al., 2003); it is an
interesting and testable possibility that reduction of trpm2 ex-
pression occurs in zebrafish trpm7 mutants and contributes to
phenotypes therein.

Robert Cornell’s group (University of lowa, Iowa City, IA) has
been investigating the mode of melanocyte cell death and the
cellular underpinnings of paralysis in zebrafish frpm7 mutant
embryos. Application of a broad-specificity caspase inhibitor,
which prevents melanocyte cell death in zebrafish embryos mu-
tant for the gene encoding the receptor tyrosine kinase Kit, does
not have this effect in trpm7 mutants, implying that melanocyte
death in these mutants does not occur by apoptosis (McNeill et
al.,, 2007). In contrast, supplementing embryo medium with
magnesium, but not calcium, rescued melanocyte cell death in
trpm7, but not kit, mutants. Interestingly, the inhibition of mel-
anin synthesis via application of a tyrosinase inhibitor also served
to prevent melanocyte cell death in trpm7 mutants (McNeill et al.,
2007). Combined with the fact that the intermediates of melanin
synthesis are toxic reactive oxygen species, these findings imply
that loss of Trpm7 leads to magnesium deficiency in melano-
phores, resulting in a buildup of toxic intermediates of melanin
synthesis that induce necrotic cell death. Notably, the loss of
TRPM?7 and excess TRPML3 activity both result in the death of
melanocytes (McNeill et al., 2007; Xu et al., 2007), possibly re-
vealing a complex interaction between these channels.

Paralysis in zebrafish trpm7 mutant embryos is intriguing be-
cause of the association of TRPM7 with a neurodegenerative dis-
ease in humans, but its cellular basis remains unknown. Thus, a
hypomorphic variant of TRPM7, encoding a channel with re-
duced propensity to close in response to intracellular magne-
sium, is associated with increased risk for the neurodegenerative
disease Iytico bodig, a disease with neurofibrillary tangles and fea-
tures of amyotrophic lateral sclerosis and parkinsonism (Hermo-
sura etal., 2005) [TRPM2 may also be associated with this disease
(for review, see Hermosura and Garruto, 2007)]. Dopaminergic
neurons share similar metabolic chemistry with melanocytes,
and the byproducts of dopamine metabolism are also known to
be toxic. Therefore, it is possible that, like melanocytes, dopami-
nergic neurons require TRPM?7 to prevent toxic buildup of do-
pamine metabolites. An alternative explanation for paralysis in
TRPM7 mutants is abnormal cholinergic signaling at the neuro-
muscular junction or perhaps in the brain because cholinergic
neurons in the sympathetic neurons require TRPM7 for normal
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synaptic transmission (Krapivinsky et al., 2006; Brauchi et al.,
2008). Additional exploration of the cellular basis of paralysis in
zebrafish frpm7 mutants may yield insight into the etiology of
Iytico bodig and potentially other neurodegenerative diseases.

Some TRP channels are regulated by

G-protein-coupled receptors

The accumulating evidence that TRP channels contribute to dis-
ease processes motivates an improved understanding of how TRP
channels are regulated. The prototypical TRP channel, dTRP,
mediates phototransduction in Drosophila, and similarly many
vertebrate TRP channels are involved in sensory transduction. At
least six TRP channels are directly gated by sensory stimuli,
whereas others, such as dTRP, are activated downstream of
G-protein-coupled receptors (GPCRs). This latter class includes
TRPC2, an ion channel expressed in the pheromone-sensing
vomeronasal organ of mammals (Liman et al., 1999; Stowers et
al., 2002), TRPMS, an ion channel that is primarily restricted to
chemosensory cells (Perez et al., 2002; Zhang et al., 2003), and
TRPA1 and TRPV1, two ion channels that are involved in noci-
ception (Jordt et al., 2003; Dhaka et al., 2006). In nonsensory
tissues, including muscle and brain, some TRP channels may,
likewise, transduce the binding of neurotransmitters to GPCRs
into electrical responses (Clapham, 2003).

The general model for understanding the GPCR-based mech-
anism of TRP channel activation is based on extensive work in the
fly photoreceptor (Montell, 1999; Hardie, 2007). A key compo-
nent of this system is PLC (NorpA), which is activated after ab-
sorption of light by rhodopsin, and is essential for phototrans-
duction (Bloomquist et al., 1988). PLC activation leads to the
hydrolysis of phosphatidyl inositol (4,5) bisphospate [P1(4,5)P2]
into diacylglycerol (DAG) and inositol trisphosphate (IP;), as
well as to the release of intracellular Ca*>* (Berridge, 1993); any of
these products might be the one that activates the Drosophila TRP
channels. Several lines of evidence suggest that it is the lipid me-
tabolites of DAG that activate the fly TRP channels and mediate
phototransduction (Chyb et al., 1999; Leung et al., 2008). Unfor-
tunately, the failure of these compounds to activate native chan-
nels has impeded progress in confirming this possibility (Hardie,
2007).

Taste is an excellent system in which to study the regulation of
TRP channels that lie downstream of GPCR signaling because
many of the molecular components of taste transduction have
been identified, and the sensory stimuli are well characterized.
Bitter is detected by a small family of GPCRs, whereas sweet and
umami are each detected by a heterodimeric GPCR (Chan-
drashekar et al., 2006). Receptors for bitter, sweet, and umami
tastes are coupled through trimeric G-proteins to the enzyme
PLCP2, whose activity is essential for taste transduction (Zhang
etal., 2003). Also essential is the ion channel TRPM5 (Perez et al.,
2002; Zhang et al., 2003; Damak et al., 2006), as revealed by the
near insensitivity of TRPM5 knock-out mice to both bitter and
sweet substances (Zhang et al., 2003; Damak et al., 2006).

How, then, does PLC activation lead to a change in the gating
of TRPM5 channels? In the laboratory of Emily Liman (Univer-
sity of Southern California, Los Angeles, CA), this question has
been addressed by studying the responses of TRPM5 channels, in
both cells expressing heterologous TRPM5 and taste cells ex-
pressing native TRPMS5, to putative second messengers. Initial
studies by this group and others have shown that, when expressed
heterologously, TRPMS5 forms a nonselective cation channel that
is activated by the elevation of intracellular Ca*" (Hofmann et
al., 2003; Liu and Liman, 2003; Prawitt et al., 2003) or by the
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depletion of Ca®" stores (Perez et al., 2002). More recently, the
Liman group showed that intracellular Ca*" released from IP,
stores gates TRPM5 in native taste receptor cells (Zhang et al.,
2007) and that, after sustained activation, TRPM5 channels, in
both native and heterologous cells, desensitize by a process that
may be mediated be the depletion of PI(4,5)P2 (Liu and Liman,
2003). Together, these data suggest a model for taste transduction
whereby elevation of IP; and the ensuing release of intracellular
Ca** gates TRPM5, leading to membrane depolarization. Al-
though this mechanism cannot explain phototransduction in
Drosophila, in which Ca®" has no direct activating effect (Ranga-
nathan et al., 1994; Hardie, 1995) and the IP; receptor is dispens-
able (Acharya et al., 1997; Raghu et al., 2000), it may be applicable
to other systems in which Ca®"-activated TRP channels
participate.
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