Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain

Dirk B. Walther, Eamon Caddigan, Li Fei-Fei and Diane M. Beck
Journal of Neuroscience 26 August 2009, 29 (34) 10573-10581; https://doi.org/10.1523/JNEUROSCI.0559-09.2009
Dirk B. Walther
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eamon Caddigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Li Fei-Fei
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Diane M. Beck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Human subjects are extremely efficient at categorizing natural scenes, despite the fact that different classes of natural scenes often share similar image statistics. Thus far, however, it is unknown where and how complex natural scene categories are encoded and discriminated in the brain. We used functional magnetic resonance imaging (fMRI) and distributed pattern analysis to ask what regions of the brain can differentiate natural scene categories (such as forests vs mountains vs beaches). Using completely different exemplars of six natural scene categories for training and testing ensured that the classification algorithm was learning patterns associated with the category in general and not specific exemplars. We found that area V1, the parahippocampal place area (PPA), retrosplenial cortex (RSC), and lateral occipital complex (LOC) all contain information that distinguishes among natural scene categories. More importantly, correlations with human behavioral experiments suggest that the information present in the PPA, RSC, and LOC is likely to contribute to natural scene categorization by humans. Specifically, error patterns of predictions based on fMRI signals in these areas were significantly correlated with the behavioral errors of the subjects. Furthermore, both behavioral categorization performance and predictions from PPA exhibited a significant decrease in accuracy when scenes were presented up-down inverted. Together these results suggest that a network of regions, including the PPA, RSC, and LOC, contribute to the human ability to categorize natural scenes.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 29 (34)
Journal of Neuroscience
Vol. 29, Issue 34
26 Aug 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain
Dirk B. Walther, Eamon Caddigan, Li Fei-Fei, Diane M. Beck
Journal of Neuroscience 26 August 2009, 29 (34) 10573-10581; DOI: 10.1523/JNEUROSCI.0559-09.2009

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain
Dirk B. Walther, Eamon Caddigan, Li Fei-Fei, Diane M. Beck
Journal of Neuroscience 26 August 2009, 29 (34) 10573-10581; DOI: 10.1523/JNEUROSCI.0559-09.2009
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles

Behavioral/Systems/Cognitive

  • Musical Expertise Induces Audiovisual Integration of Abstract Congruency Rules
  • The Laminar Development of Direction Selectivity in Ferret Visual Cortex
  • Individual Differences in Amygdala-Medial Prefrontal Anatomy Link Negative Affect, Impaired Social Functioning, and Polygenic Depression Risk
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.