Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Featured ArticleArticles, Cellular/Molecular

Nasal Airflow Rate Affects the Sensitivity and Pattern of Glomerular Odorant Responses in the Mouse Olfactory Bulb

Yuki Oka, Yoshiki Takai and Kazushige Touhara
Journal of Neuroscience 30 September 2009, 29 (39) 12070-12078; DOI: https://doi.org/10.1523/JNEUROSCI.1415-09.2009
Yuki Oka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yoshiki Takai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kazushige Touhara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Sniffing is a characteristic odor sampling behavior in various mammalian species, which is associated with an increase in both nasal airflow rate and breathing frequency. Although the importance of sniffing in olfaction is well recognized, it has been challenging to separate the effect of airflow rate and sniffing frequency in vivo. In this study, we examined the individual effects of airflow rate and frequency on odorant responses of glomeruli in the mouse olfactory bulb (OB) using calcium imaging techniques and an artificial sniffing system. We found that nasal airflow rate, but not sniffing frequency, affected the apparent glomerular responses. When measured using OB imaging, apparent sensitivity for some of the odorants was significantly greater at the high nasal flow rates, while other odorants exhibited the opposite effect. In a single defined glomerulus, the sensitivity shift caused by changes in flow rate varied between odorants, suggesting that the flow rate effect is dependent on the chemical properties of an odorant rather than on the specific characteristics of the expressed olfactory receptor. Using natural flavors containing a variety of odorants, different glomerular activation patterns were observed between breathing and sniffing condition, likely due to odorant-dependent flow rate effects. Our results provide important information on in vivo odorant recognition and suggest that odor representation in the OB is not fixed but rather varies significantly depending on the respiratory state.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 29 (39)
Journal of Neuroscience
Vol. 29, Issue 39
30 Sep 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nasal Airflow Rate Affects the Sensitivity and Pattern of Glomerular Odorant Responses in the Mouse Olfactory Bulb
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Nasal Airflow Rate Affects the Sensitivity and Pattern of Glomerular Odorant Responses in the Mouse Olfactory Bulb
Yuki Oka, Yoshiki Takai, Kazushige Touhara
Journal of Neuroscience 30 September 2009, 29 (39) 12070-12078; DOI: 10.1523/JNEUROSCI.1415-09.2009

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Nasal Airflow Rate Affects the Sensitivity and Pattern of Glomerular Odorant Responses in the Mouse Olfactory Bulb
Yuki Oka, Yoshiki Takai, Kazushige Touhara
Journal of Neuroscience 30 September 2009, 29 (39) 12070-12078; DOI: 10.1523/JNEUROSCI.1415-09.2009
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Cellular/Molecular

  • Carbogen-induced respiratory acidosis blocks experimental seizures by a direct and specific inhibition of NaV1.2 channels in the axon initial segment of pyramidal neurons
  • Synaptotagmin 9 Modulates Spontaneous Neurotransmitter Release in Striatal Neurons by Regulating Substance P Secretion
  • Indirect Effects of Halorhodopsin Activation: Potassium Redistribution, Nonspecific Inhibition, and Spreading Depolarization
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.