Abstract
Color is important for segmenting objects from backgrounds, which can in turn facilitate visual search in complex scenes. However, brain areas involved in orienting the eyes toward colored stimuli in our environment are not believed to have access to color information. Here, we show that neurons in the intermediate layers of the monkey superior colliculus (SC), a critical structure for the production of saccadic eye movements, can respond to isoluminant color stimuli with the same magnitude as a maximum contrast luminance stimulus. In contrast, neurons from the superficial SC layers showed little color-related activity. Crucially, visual onset latencies were 30–35 ms longer for color, implying that luminance and chrominance information reach the SC through distinct pathways and that the observed color-related activity is not the result of residual luminance signals. Furthermore, these differences in visual onset latency translated directly into differences in saccadic reaction time. The results demonstrate that the saccadic system can signal the presence of chromatic stimuli only one stage from the brainstem premotor circuitry that drives the eyes.