Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Symposia and Mini-SymposiaM

Cycling Behavior and Memory Formation

Jason R. Gerstner, Lisa C. Lyons, Kenneth P. Wright Jr, Dawn H. Loh, Oliver Rawashdeh, Kristin L. Eckel-Mahan and Gregg W. Roman
Journal of Neuroscience 14 October 2009, 29 (41) 12824-12830; DOI: https://doi.org/10.1523/JNEUROSCI.3353-09.2009
Jason R. Gerstner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lisa C. Lyons
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth P. Wright Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dawn H. Loh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oliver Rawashdeh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kristin L. Eckel-Mahan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregg W. Roman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Circadian research has spent considerable effort in the determining clock output pathways, including identifying both physiological and behavioral processes that demonstrate significant time-of-day variation. Memory formation and consolidation represent notable processes shaped by endogenous circadian oscillators. To date, very few studies on memory mechanisms have considered potential confounding effects of time-of-day and the organism's innate activity cycles (e.g., nocturnal, diurnal, or crepuscular). The following studies highlight recent work describing this interactive role of circadian rhythms and memory formation, and were presented at a mini-symposium at the 2009 annual meeting of the Society for Neuroscience. The studies illustrate these time-of-day observations in a variety of behavioral paradigms and model organisms, including olfactory avoidance conditioning in Drosophila, long-term sensitization in Aplysia, active-avoidance conditioning in Zebrafish, and classical fear conditioning in rodents, suggesting that the circadian influence on memory behavior is highly conserved across species. Evidence also exists for a conserved mechanistic relationship between specific cycling molecules and memory formation, and the extent to which proper circadian cycling of these molecules is necessary for optimal cognitive performance. Studies describe the involvement of the core clock gene period, as well as vasoactive intestinal peptide, melatonin, and the cAMP/MAPK (cAMP/mitogen-activated protein kinase) cascade. Finally, studies in humans describe evidence for alterations in cognitive performance based on an interaction between sleep–wake homeostasis and the internal circadian clock. Conservation of a functional relationship between circadian rhythms with learning and memory formation across species provides a critical framework for future analysis of molecular mechanisms underlying complex behavior.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 29 (41)
Journal of Neuroscience
Vol. 29, Issue 41
14 Oct 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cycling Behavior and Memory Formation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Cycling Behavior and Memory Formation
Jason R. Gerstner, Lisa C. Lyons, Kenneth P. Wright Jr, Dawn H. Loh, Oliver Rawashdeh, Kristin L. Eckel-Mahan, Gregg W. Roman
Journal of Neuroscience 14 October 2009, 29 (41) 12824-12830; DOI: 10.1523/JNEUROSCI.3353-09.2009

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Cycling Behavior and Memory Formation
Jason R. Gerstner, Lisa C. Lyons, Kenneth P. Wright Jr, Dawn H. Loh, Oliver Rawashdeh, Kristin L. Eckel-Mahan, Gregg W. Roman
Journal of Neuroscience 14 October 2009, 29 (41) 12824-12830; DOI: 10.1523/JNEUROSCI.3353-09.2009
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • The Brain in Its Body: Motor Control and Sensing in a Biomechanical Context
  • The Epigenetics of Sex Differences in the Brain
Show more Symposia and Mini-Symposia
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.