Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles, Neurobiology of Disease

Development of Spontaneous Recurrent Seizures after Kainate-Induced Status Epilepticus

Philip A. Williams, Andrew M. White, Suzanne Clark, Damien J. Ferraro, Waldemar Swiercz, Kevin J. Staley and F. Edward Dudek
Journal of Neuroscience 18 February 2009, 29 (7) 2103-2112; https://doi.org/10.1523/JNEUROSCI.0980-08.2009
Philip A. Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew M. White
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Suzanne Clark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Damien J. Ferraro
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Waldemar Swiercz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kevin J. Staley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Edward Dudek
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Acquired epilepsy (i.e., after an insult to the brain) is often considered to be a progressive disorder, and the nature of this hypothetical progression remains controversial. Antiepileptic drug treatment necessarily confounds analyses of progressive changes in human patients with acquired epilepsy. Here, we describe experiments testing the hypothesis that development of acquired epilepsy begins as a continuous process of increased seizure frequency (i.e., proportional to probability of a spontaneous seizure) that ultimately plateaus. Using nearly continuous surface cortical and bilateral hippocampal recordings with radiotelemetry and semiautomated seizure detection, the frequency of electrographically recorded seizures (both convulsive and nonconvulsive) was analyzed quantitatively for ∼100 d after kainate-induced status epilepticus in adult rats. The frequency of spontaneous recurrent seizures was not a step function of time (as implied by the “latent period”); rather, seizure frequency increased as a sigmoid function of time. The distribution of interseizure intervals was nonrandom, suggesting that seizure clusters (i.e., short interseizure intervals) obscured the early stages of progression, and may have contributed to the increase in seizure frequency. These data suggest that (1) the latent period is the first of many long interseizure intervals and a poor measure of the time frame of epileptogenesis, (2) epileptogenesis is a continuous process that extends much beyond the first spontaneous recurrent seizure, (3) uneven seizure clustering contributes to the variability in occurrence of epileptic seizures, and (4) the window for antiepileptogenic therapies aimed at suppressing acquired epilepsy probably extends well past the first clinical seizure.

  • convulsion
  • EEG
  • epilepsy
  • latent period
  • radiotelemetry
  • seizure clusters
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 29 (7)
Journal of Neuroscience
Vol. 29, Issue 7
18 Feb 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Acknowledgements for Reviewers
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Development of Spontaneous Recurrent Seizures after Kainate-Induced Status Epilepticus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Development of Spontaneous Recurrent Seizures after Kainate-Induced Status Epilepticus
Philip A. Williams, Andrew M. White, Suzanne Clark, Damien J. Ferraro, Waldemar Swiercz, Kevin J. Staley, F. Edward Dudek
Journal of Neuroscience 18 February 2009, 29 (7) 2103-2112; DOI: 10.1523/JNEUROSCI.0980-08.2009

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Development of Spontaneous Recurrent Seizures after Kainate-Induced Status Epilepticus
Philip A. Williams, Andrew M. White, Suzanne Clark, Damien J. Ferraro, Waldemar Swiercz, Kevin J. Staley, F. Edward Dudek
Journal of Neuroscience 18 February 2009, 29 (7) 2103-2112; DOI: 10.1523/JNEUROSCI.0980-08.2009
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles

Neurobiology of Disease

  • The psychedelic psilocin suppresses activity of central amygdala corticotropin releasing factor receptor 1 neurons and decreases ethanol drinking in female mice
  • Noninvasive Biomarkers for Assessing the Excitatory/Inhibitory Imbalance in Children with Epilepsy
  • Common Mechanism Underlying Synaptic Dysfunction Caused by Preformed Fibril-Induced Accumulation of α-Synuclein or Tau in a Culture Propagation Model
Show more Neurobiology of Disease
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.