Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia

KR Jessen and R Mirsky
Journal of Neuroscience 1 November 1983, 3 (11) 2206-2218; DOI: https://doi.org/10.1523/JNEUROSCI.03-11-02206.1983
KR Jessen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Mirsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The similarities between the enteric nervous system of the gut and the central nervous system (CNS), both of which function as complex integrative nervous networks, include striking ultrastructural similarities between the glia of the enteric nervous system and the astrocytic glia of the CNS. In this paper we have determined whether this anatomical resemblance also extends to the molecular level by examining the enteric glial cells to see whether they express several surface and intracellular molecules which are highly restricted to glia and to astrocytes in particular. Indirect immunofluorescence was used to visualize the antigens in frozen sections of gut wall and in whole mount, tissue culture, and freshly dissected preparations of myenteric and submucous plexuses from rats of various ages. It was found that enteric glial cells expressed the intracellular proteins glial fibrillary acidic protein, glutamine synthetase, and vimentin both in situ and in culture. The surface antigen Ran-2 was expressed in situ but not in culture, and the surface antigen Ran-1 was expressed in culture but not in situ. Cultured enteric glial cells did not express fibronectin in significant quantity, nor did they make galactocerebroside. From these results we conclude that the adult phenotype of enteric glia in situ closely resembles that of astrocytes, while in culture some of their cell surface features change, reverting to those seen during development. Because these cells possess distinctive molecular features and numerically form one of the major populations of peripheral glia, it is appropriate to classify them as a third distinctive category of peripheral glial cells, in addition to satellite and Schwann cells. The molecular similarities between these cells and astrocytes, in addition to their anatomical resemblance, suggest that a further study of enteric glia will provide new insights into the role of glia in integrative nervous tissues.

Back to top

In this issue

The Journal of Neuroscience: 3 (11)
Journal of Neuroscience
Vol. 3, Issue 11
1 Nov 1983
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia
KR Jessen, R Mirsky
Journal of Neuroscience 1 November 1983, 3 (11) 2206-2218; DOI: 10.1523/JNEUROSCI.03-11-02206.1983

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia
KR Jessen, R Mirsky
Journal of Neuroscience 1 November 1983, 3 (11) 2206-2218; DOI: 10.1523/JNEUROSCI.03-11-02206.1983
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.