Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Retrograde labeling, enrichment, and characterization of retinal ganglion cells from the neonatal rat

PV Sarthy, BM Curtis and WA Catterall
Journal of Neuroscience 1 December 1983, 3 (12) 2532-2544; DOI: https://doi.org/10.1523/JNEUROSCI.03-12-02532.1983
PV Sarthy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BM Curtis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WA Catterall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have developed a method for labeling retinal ganglion cells in neonatal rats by retrograde transport of the fluorescent dye, True Blue (TB), injected into the optic chiasm. Following proteolytic dissociation of labeled retinas into single cells, the labeled cells could be enriched 50- to 100-fold by centrifugation in a 5%/10% metrizamide gradient. When plated in Ham's F-10 medium in the presence of fetal calf serum and chick optic tectum-conditioned medium, the labeled cells could be maintained in vitro up to 48 hr. In these cultures, the ganglion cells (GCS) constituted 50 to 70% of the total cell population. When GC-rich fractions or GC cultures were stained with a monoclonal antibody to Thy-1 antigen, greater than 90% of the TB- labeled cells were reactive. In order to localize voltage-sensitive sodium channels, GC-rich cultures were reacted with 125I-scorpion toxin. Analysis of the autoradiograms showed that the density of silver grains was about 10-fold higher on TB-labeled cells than on nonfluorescent cells, or in controls which contained excess of unlabeled toxin. When GC cultures were incubated with micromolar concentrations of putative GC transmitters, aspartate and glutamate, the amino acids were accumulated by 15 to 20% of labeled cells. Several lectin receptors were also localized on TB-labeled cells in situ. Whereas the lectins wheat germ agglutinin, concanavalin A, peanut agglutinin, Dolichos biflorus agglutinin, and Limulus polyphemus agglutinin bound to TB-labeled cells, others such as Ricinus communis agglutinin I, Ulex, and Lotus lectins showed no binding. The lectin binding was specific since preincubation with the appropriate hapten sugar blocked lectin binding.

Back to top

In this issue

The Journal of Neuroscience: 3 (12)
Journal of Neuroscience
Vol. 3, Issue 12
1 Dec 1983
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Retrograde labeling, enrichment, and characterization of retinal ganglion cells from the neonatal rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Retrograde labeling, enrichment, and characterization of retinal ganglion cells from the neonatal rat
PV Sarthy, BM Curtis, WA Catterall
Journal of Neuroscience 1 December 1983, 3 (12) 2532-2544; DOI: 10.1523/JNEUROSCI.03-12-02532.1983

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Retrograde labeling, enrichment, and characterization of retinal ganglion cells from the neonatal rat
PV Sarthy, BM Curtis, WA Catterall
Journal of Neuroscience 1 December 1983, 3 (12) 2532-2544; DOI: 10.1523/JNEUROSCI.03-12-02532.1983
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.