Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat

HL Fields, J Bry, I Hentall and G Zorman
Journal of Neuroscience 1 December 1983, 3 (12) 2545-2552; DOI: https://doi.org/10.1523/JNEUROSCI.03-12-02545.1983
HL Fields
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Bry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I Hentall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Zorman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neurons of the rostral ventromedial medulla (RVM) have been implicated in the modulation of nociceptive transmission. In order to further analyze their role in pain behavior, we studied their activity while eliciting the tail flick reflex with noxious heat. Recording sites were regions in the RVM from which microstimulation (less than or equal to 10 microA, 400 mu sec, 50 Hz continuous pulse trains) inhibited the tail flick reflex. Extracellular unit activity and tail temperature were recorded, stored, and plotted with reference to either the time of tail flick or the time when the stimulating temperature reached 45 degrees C. Neuronal discharges were found to be either increased (on- cells), decreased (off-cells), or unchanged around the time of the tail flick. The decreases in discharge were more closely correlated with the tail flick behavior than with the temperature of the stimulus. These off-cells were located at sites of lowest threshold for tail flick inhibition and tended to be ventral to on-cells. We propose that off- cells must pause if the tail flick is to occur, and that this pausing allows the transmission of nociceptive input through spinal reflex loops.

Back to top

In this issue

The Journal of Neuroscience: 3 (12)
Journal of Neuroscience
Vol. 3, Issue 12
1 Dec 1983
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat
HL Fields, J Bry, I Hentall, G Zorman
Journal of Neuroscience 1 December 1983, 3 (12) 2545-2552; DOI: 10.1523/JNEUROSCI.03-12-02545.1983

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat
HL Fields, J Bry, I Hentall, G Zorman
Journal of Neuroscience 1 December 1983, 3 (12) 2545-2552; DOI: 10.1523/JNEUROSCI.03-12-02545.1983
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.