Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Binaural characteristics of units in the owl's brainstem auditory pathway: precursors of restricted spatial receptive fields

A Moiseff and M Konishi
Journal of Neuroscience 1 December 1983, 3 (12) 2553-2562; DOI: https://doi.org/10.1523/JNEUROSCI.03-12-02553.1983
A Moiseff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Konishi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The barn owl uses binaural phase and intensity differences for sound localization. These two cues also determine the receptive fields of specialized neurons in the inferior colliculus. The main aim of this study was to investigate where neuronal sensitivity to the binaural cues emerges in the brainstem auditory nuclei, and how this sensitivity reaches the neurons in the inferior colliculus. The owl's phase- sensitive neurons are selective to microsecond phase differences of high frequency signals, unlike mammalian phase-sensitive neurons which are restricted to low frequency signals. In certain nuclei virtually all of the neurons are sensitive to either phase differences or intensity differences, but not to both. These nuclei form two distinctly separate pathways that converge at the inferior colliculus where neurons selective to both phase and intensity differences occur. In contrast to the mammalian auditory system, the owl's phase- and intensity difference-sensitive pathways are not segregated into low frequency and high frequency channels.

Back to top

In this issue

The Journal of Neuroscience: 3 (12)
Journal of Neuroscience
Vol. 3, Issue 12
1 Dec 1983
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Binaural characteristics of units in the owl's brainstem auditory pathway: precursors of restricted spatial receptive fields
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Binaural characteristics of units in the owl's brainstem auditory pathway: precursors of restricted spatial receptive fields
A Moiseff, M Konishi
Journal of Neuroscience 1 December 1983, 3 (12) 2553-2562; DOI: 10.1523/JNEUROSCI.03-12-02553.1983

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Binaural characteristics of units in the owl's brainstem auditory pathway: precursors of restricted spatial receptive fields
A Moiseff, M Konishi
Journal of Neuroscience 1 December 1983, 3 (12) 2553-2562; DOI: 10.1523/JNEUROSCI.03-12-02553.1983
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.