Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Frequency-selective adaptation: evidence for channels in the vestibulo- ocular reflex?

SG Lisberger, FA Miles and LM Optican
Journal of Neuroscience 1 June 1983, 3 (6) 1234-1244; https://doi.org/10.1523/JNEUROSCI.03-06-01234.1983
SG Lisberger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
FA Miles
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LM Optican
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The vestibulo-ocular reflex (VOR) is under long-term adaptive regulation to minimize retinal image slip during head movement; normally this process keeps VOR gain (eye velocity divided by head velocity) near 1.0. It has been common to think of the adaptive mechanism as a single pure gain element, although some properties of the system (e.g., frequency-selective changes in the gain of the VOR) argue that it must be more complex. We now report new observations on the frequency selectivity of the adaptive mechanism. Our data suggest a new model in which the VOR operates as a series of parallel, temporal frequency channels, each of which has an independently adjustable gain element. Adaptive changes were produced by oscillating monkeys sinusoidally at a single temporal frequency (0.2 or 2.0 Hz) in visual conditions that cause either increases (toward two) or decreases (toward zero) in VOR gain. When tested in darkness at the adapting frequency, the VOR showed large changes in gain and little or no change in phase. When tested at frequencies other than the adapting frequency, the VOR showed less pronounced changes in gain and unexpected changes in phase. The phase changes were orderly but depended in a complex way on adapting frequency, testing frequency, and VOR gain. We have tested the channels concept by calculating the response properties of a mathematical model that processed its inputs in parallel pathways. The model reproduced our data when we assumed that the vestibular primary afferents were distributed in an orderly way to parallel brain channels that had differing dynamics: vestibular inputs with more phase lead projected to higher frequency channels, which themselves had faster dynamics than their low frequency counterparts. Such an organization, when regulated by an adaptive controller that can selectively alter the gain of one channel, could play a key role in establishing and maintaining the frequency-independent performance seen in the adult VOR.

Back to top

In this issue

The Journal of Neuroscience: 3 (6)
Journal of Neuroscience
Vol. 3, Issue 6
1 Jun 1983
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Frequency-selective adaptation: evidence for channels in the vestibulo- ocular reflex?
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Frequency-selective adaptation: evidence for channels in the vestibulo- ocular reflex?
SG Lisberger, FA Miles, LM Optican
Journal of Neuroscience 1 June 1983, 3 (6) 1234-1244; DOI: 10.1523/JNEUROSCI.03-06-01234.1983

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Frequency-selective adaptation: evidence for channels in the vestibulo- ocular reflex?
SG Lisberger, FA Miles, LM Optican
Journal of Neuroscience 1 June 1983, 3 (6) 1234-1244; DOI: 10.1523/JNEUROSCI.03-06-01234.1983
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.