Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Attention-Like Modulation of Hippocampus Place Cell Discharge

André A. Fenton, William W. Lytton, Jeremy M. Barry, Pierre-Pascal Lenck-Santini, Larissa E. Zinyuk, Štepan Kubík, Jan Bureš, Bruno Poucet, Robert U. Muller and Andrey V. Olypher
Journal of Neuroscience 31 March 2010, 30 (13) 4613-4625; DOI: https://doi.org/10.1523/JNEUROSCI.5576-09.2010
André A. Fenton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William W. Lytton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeremy M. Barry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre-Pascal Lenck-Santini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Larissa E. Zinyuk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Štepan Kubík
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan Bureš
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bruno Poucet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert U. Muller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrey V. Olypher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Hippocampus place cell discharge is an important model system for understanding cognition, but evidence is missing that the place code is under the kind of dynamic attentional control characterized in primates as selective activation of one neural representation and suppression of another, competing representation. We investigated the apparent noise (“overdispersion”) in the CA1 place code, hypothesizing that overdispersion results from discharge fluctuations as spatial attention alternates between distal cues and local/self-motion cues. The hypothesis predicts that: (1) preferential use of distal cues will decrease overdispersion; (2) global, attention-like states can be decoded from ensemble discharge such that both the discharge rates and the spatial firing patterns of individual cells will be distinct in the two states; (3) identifying attention-like states improves reconstructions of the rat's path from ensemble discharge. These predictions were confirmed, implying that a covert, dynamic attention-like process modulates discharge on a ∼1 s time scale. We conclude the hippocampus place code is a dynamic representation of the spatial information in the immediate focus of attention.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 30 (13)
Journal of Neuroscience
Vol. 30, Issue 13
31 Mar 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Attention-Like Modulation of Hippocampus Place Cell Discharge
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Attention-Like Modulation of Hippocampus Place Cell Discharge
André A. Fenton, William W. Lytton, Jeremy M. Barry, Pierre-Pascal Lenck-Santini, Larissa E. Zinyuk, Štepan Kubík, Jan Bureš, Bruno Poucet, Robert U. Muller, Andrey V. Olypher
Journal of Neuroscience 31 March 2010, 30 (13) 4613-4625; DOI: 10.1523/JNEUROSCI.5576-09.2010

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Attention-Like Modulation of Hippocampus Place Cell Discharge
André A. Fenton, William W. Lytton, Jeremy M. Barry, Pierre-Pascal Lenck-Santini, Larissa E. Zinyuk, Štepan Kubík, Jan Bureš, Bruno Poucet, Robert U. Muller, Andrey V. Olypher
Journal of Neuroscience 31 March 2010, 30 (13) 4613-4625; DOI: 10.1523/JNEUROSCI.5576-09.2010
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Systems/Cognitive

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.