Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Cholinergic Modulation of Locomotion and Striatal Dopamine Release Is Mediated by α6α4* Nicotinic Acetylcholine Receptors

Ryan M. Drenan, Sharon R. Grady, Andrew D. Steele, Sheri McKinney, Natalie E. Patzlaff, J. Michael McIntosh, Michael J. Marks, Julie M. Miwa and Henry A. Lester
Journal of Neuroscience 21 July 2010, 30 (29) 9877-9889; DOI: https://doi.org/10.1523/JNEUROSCI.2056-10.2010
Ryan M. Drenan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sharon R. Grady
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew D. Steele
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sheri McKinney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Natalie E. Patzlaff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Michael McIntosh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael J. Marks
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julie M. Miwa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Henry A. Lester
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Dopamine (DA) release in striatum is governed by firing rates of midbrain DA neurons, striatal cholinergic tone, and nicotinic ACh receptors (nAChRs) on DA presynaptic terminals. DA neurons selectively express α6* nAChRs, which show high ACh and nicotine sensitivity. To help identify nAChR subtypes that control DA transmission, we studied transgenic mice expressing hypersensitive α6L9′S* receptors. α6L9′S mice are hyperactive, travel greater distance, exhibit increased ambulatory behaviors such as walking, turning, and rearing, and show decreased pausing, hanging, drinking, and grooming. These effects were mediated by α6α4* pentamers, as α6L9′S mice lacking α4 subunits displayed essentially normal behavior. In α6L9′S mice, receptor numbers are normal, but loss of α4 subunits leads to fewer and less sensitive α6* receptors. Gain-of-function nicotine-stimulated DA release from striatal synaptosomes requires α4 subunits, implicating α6α4β2* nAChRs in α6L9′S mouse behaviors. In brain slices, we applied electrochemical measurements to study control of DA release by α6L9′S nAChRs. Burst stimulation of DA fibers elicited increased DA release relative to single action potentials selectively in α6L9′S, but not WT or α4KO/α6L9′S, mice. Thus, increased nAChR activity, like decreased activity, leads to enhanced extracellular DA release during phasic firing. Bursts may directly enhance DA release from α6L9′S presynaptic terminals, as there was no difference in striatal DA receptor numbers or DA transporter levels or function in vitro. These results implicate α6α4β2* nAChRs in cholinergic control of DA transmission, and strongly suggest that these receptors are candidate drug targets for disorders involving the DA system.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 30 (29)
Journal of Neuroscience
Vol. 30, Issue 29
21 Jul 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cholinergic Modulation of Locomotion and Striatal Dopamine Release Is Mediated by α6α4* Nicotinic Acetylcholine Receptors
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Cholinergic Modulation of Locomotion and Striatal Dopamine Release Is Mediated by α6α4* Nicotinic Acetylcholine Receptors
Ryan M. Drenan, Sharon R. Grady, Andrew D. Steele, Sheri McKinney, Natalie E. Patzlaff, J. Michael McIntosh, Michael J. Marks, Julie M. Miwa, Henry A. Lester
Journal of Neuroscience 21 July 2010, 30 (29) 9877-9889; DOI: 10.1523/JNEUROSCI.2056-10.2010

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Cholinergic Modulation of Locomotion and Striatal Dopamine Release Is Mediated by α6α4* Nicotinic Acetylcholine Receptors
Ryan M. Drenan, Sharon R. Grady, Andrew D. Steele, Sheri McKinney, Natalie E. Patzlaff, J. Michael McIntosh, Michael J. Marks, Julie M. Miwa, Henry A. Lester
Journal of Neuroscience 21 July 2010, 30 (29) 9877-9889; DOI: 10.1523/JNEUROSCI.2056-10.2010
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Systems/Cognitive

  • Gravin Orchestrates Protein Kinase A and β2-Adrenergic Receptor Signaling Critical for Synaptic Plasticity and Memory
  • Generation of Intensity Selectivity by Differential Synaptic Tuning: Fast-Saturating Excitation But Slow-Saturating Inhibition
  • Episodic Reinstatement in the Medial Temporal Lobe
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.